The rights of the child, XR technology and schools

In March 2021, as the Covid-19 pandemic raged and school students in many countries were adapting to online learning, the United Nations (UN) released “General comment No. 25 on the children’s rights in relation to the digital environment”. Drawing on an extensive international consultation process with children and a raft of expert submissions, General comment 25 provides guidance on how children’s rights should be fostered and protected in digital environments. This post outlines some key areas in General comment 25 in order to pose some thoughts on how they relate to the use of XR (eXtended Reality including augmented and virtual reality) technology in schools.

Before outlining these key areas, it is worth historically situating General comment 25. It is part of a children’s rights-based lineage from the UN adopting the Declaration of the Rights of the Child (1959) to the Convention on the Rights of the Child (1989) which recognised the social, economic, cultural and civil roles of children and setting a minimum standards for protecting their rights. Below is a poster version which provides a snapshot of the principles that underpin the Convention of the Rights of the Child. Nation state signatories to the Convention can be found here

UN+rights+of+the+child+teen+edition+A4

To return to General comment 25, the document begins by using the four principles from the Convention to provide guidance on children’s digital rights. The principles and some of my thoughts on their implications for XR in schools are outlined below:

  1. NON-DISCRIMATION“The right to non-discrimination requires States parties ensure that all children have equal and effective access to the digital environment in ways that are meaningful to them. States parties should take all measures necessary to overcome digital exclusion.” (p. 2).

Implications: All schools, not just wealthy ones, should be able to provide their students with continuous, equitable and meaningful access to XR learning technologies including the infrastructure (connectivity, bandwidth etc) that powers the tech. Teachers should be provided with independent, evidence-based professional learning opportunities and ongoing pedagogical support to assist them to integrate XR in ways that are most effective for learning across subjects and in integrated units of work. Digital divides are born in policy (and funding) failures, no more so than in the field of school education.

  1. BEST INTERESTS OF THE CHILD“States parties should ensure that, in all actions regarding the provision, regulation, design, management and use of the digital environment, the best interests of every child is a primary consideration” (p. 2-3).

Implications: Most countries are at an early stage of regulation governing XR technology and the development of ethical standards informing its design is also nascent. In the meantime, there are some existing frameworks such as safety by design, privacy by design and guidelines on automated decision making that schools should utilise to guide procurement and implementation. I realise this feels like yet another thing to learn and do beyond the core business of schooling; however, until there is strong regulation and industry-wide accepted ethical standards in place, it is perhaps the only way most teachers in most countries will be able to uphold the digital rights of the child.

  1. RIGHT TO LIFE, SURVIVAL AND DEVELOPMENT “Opportunities provided by the digital environment play an increasingly crucial role in children’s development… States parties should identify and address the emerging risks that children face in diverse contexts, including by listening to their views on the nature of the particular risks that they face…. States parties should pay specific attention to the effects of technology in the earliest years of life, when brain plasticity is maximal and the social environment…. Training and advice on the appropriate use of digital devices should be given to parents, caregivers, educators and other relevant actors, taking into account the research on the effects of digital technologies on children’s development … ” (p. 3).

Implications: . Teachers use their knowledge of child development everyday in the classroom. This knowledge about child development needs to be extended to include the potential effects of XR technologies on children and adolescents. There is no other technology like XR technology – It can make the user’s brain and the body feel as though they are in a totally different place, imaginary or actual, with real and computer-generated actors interacting in real time, for better and for worse. There is evidence that children have developed false memories after a VR experience. There are also child protection issues related to the use of VR equipment in classrooms and open social VR platforms. The current evidence base on the immediate and longer term effects of immersive technology on children is inadequate as very few studies have been conducted and there is more work required on ensuring research with children using XR technology is ethical. Most manufacturers of VR headsets provide health and safety information and suggested age limits; however, like Terms of Service and company privacy policies, these are often not read or skimmed over. There is a great deal of work to be done by both government and industry in developing plain English and child-friendly policy related to technology risks including but not limited to privacy issues. In the digital sphere of education policy and in industry, there are either opaque or non-existent accountability mechanisms to query or contest data extraction and use, and third-party data interests, or to seek redress if something goes wrong. There is significant work to do if children and their parents/caregivers are to be given a voice and ways to effectively exercise rights in the digital learning space generally and with XR specifically.      

  1. RESPECT FOR THE VIEWS OF THE CHILD – “When developing legislation, policies, programmes, services and training on children’s rights in relation to the digital environment, States parties should involve all children, listen to their needs and give due weight to their views. They should ensure that digital service providers actively engage with children, applying appropriate safeguards, and give their views due consideration when developing products and services.” (p.3-4).

What are the views of children on the digital environment including XR technologies for leisure and learning? How do schooling systems and teachers amplify these voices for good transparent policy development and to inform classroom practice? How can schools engage in critical conversations with technology companies and ask the right ethical and educational questions about EdTech to seek evidence of effectiveness for learning and to advocate on behalf of children especially when so much of schooling has become platform dominated (often one-platform dominated)? Why is there a dearth of independent professional learning on digital technologies available to teachers?  It is fair to say that these are generally unanswered yet vital questions that deserve more than lip service from state education authorities and those in charge of schooling systems. The proliferation of digital literacy curricula is a good place to start classroom conversations. In case you are interested, here is a child friendly version of General comment 25 that can be used in class.

It is worth ending this whirlwind tour through some sections of General Comment 25 by highlighting section 42 of the document that specifically related to XR technologies:

“States parties should prohibit by law the profiling or targeting of children of any age for commercial purposes on the basis of a digital record of their actual or inferred characteristics, including group or collective data, targeting by association or affinity profiling. Practices that rely on neuromarketing, emotional analytics, immersive advertising and advertising in virtual and augmented reality environments to promote products, applications and services should also be prohibited from engagement directly or indirectly with children.” (pp.7-8).

There is a lot to unpack in this paragraph. Here are some key points to consider. The intersection between XR and artificial intelligence (AI) has hastened the harvesting of highly identifiable data from people’s bodies known as biometric data. This is harvested using the tracking and sensors built into XR hardware and software products and represents a significant privacy risk to users of the technology including children. Data can be (and is) being collected through the tracking of limb, head and finger movements, gaze patterns and pupil dilation as proxy measures for attention, facial expressions, speech and written communication, geolocation sensors, and information about the surrounding environment captured via pass-through camera technology in headsets. As boring as it seems, it is well worth reviewing the privacy policies of XR software and hardware companies. For example, check out Meta’s supplementary privacy policy, which also has a separate eye tracking policy embedded into it, to get a sense of the degree of biometric data harvesting and potential sharing of this with third parties.

The thing about biometric data is that is so personal that it can be used to identify individuals and settings. While the privacy implications of this for adults is serious, the implications for children and schools is even more concerning. In many countries and jurisdictions there is weak regulation around biometric data collection, storage, use and commercial currency for third party transactions (selling on bodily information)  despite its sensitivities. In addition, the use of that data, linked to other information collected via multiple platforms and online interactions, for surveilling, unfairly profiling, and manipulating or ‘nudging’ people’s emotional states and behaviour, covertly and overtly, raises serious ethical issues especially for vulnerable populations such as children. Hence, General Comment 25 specifically identifies virtual and augmented reality technology as representing a special class of risk to children. If you want to learn more about the ethics and implications of AI-powered biometric and affective computing applications for schools, check out the ethical framework for education contained in this report.    

Now is the time that teachers, educational policy makers, researchers and industry need to have serious conversations WITH children and their parent and caregivers about the digital rights of the child broadly and especially in relation to unique challenges emerging technologies that XR and AI bring. But conversations will not be enough. Consultation and engagement need to be accompanied by practical educational, accountability and regulatory initiatives if the digital right of the child are to be endorsed and celebrated in schools.

This post bought to you by A/Prof Erica Southgate.

Cover image by https://oscaw.com/art-camp-week-2-lets-make-eyes 

The metaverse

Ever since Facebook announced its vision for their metaverse on 28 October 2021, including the company’s name change to Meta, there has been a buzz about what it might mean for the future of the internet and our digital (and real) lives.  

Of course, this announcement was set against the recent warnings from a reputable whistle-blower about the harm the social media company is doing including to children and young people through its algorithms that shape user beliefs and behaviour, and inadequate moderation of harmful content.  

This blog post unpacks the idea of the metaverse, taking into account Facebook’s vision but also extending beyond it, to understand its history and highlight some implications for teachers.

Where does the term metaverse come from?

English teachers – You Are Up!

The term metaverse was coined by Neal Stephenson in his 1992 cyber punk novel Snow Crash. It referred to a computer generated universe.

40651883._SY475_

Snow Crash is a rollicking sci fi read that has fired-up the imagination of those interested in possible technology futures with its fascinating portrayal of the persistent immersive 3D digital world of the metaverse that can be jacked into through a personal headset or public booths that produce a lower grade, glitchy avatar. In fact, the novel popularised the word avatar. It also highlighted the dangers of corporate and government control of knowledge and its infrastructures, dreamt up a devastating hybrid DNA and digital virus, and featured deadly semi-autonomous weapons called ‘rat things’.

An aside: For an earlier version of the metaverse, but this one was called the ‘matrix’, see William Gibson’s (1984) Neuromancer, a dazzling tale about a VR universe inhabited by mastermind AIs that influenced the Matrix film trilogy (soon to be quadrilogy).

What will the metaverse be?

The idea of the metaverse extends beyond Facebook’s (proprietary?) influence and has been described as a spatialised interoperable version of the internet. At the moment no one really knows what the metaverse might be like although there are current smart glasses, persistent VR spaces and gaming sites that provide a window into social, commercial, communication and creative aspects of it. Users will probably connect with the persistent interfaces, spaces and layers of the metaverse using a VR headset or smart glasses or on a screen (or with some type of yet-to-be-invented hardware that can integrate aspects of these). There is also a future vision, and investment into research, for direct human brain-computer interface. The metaverse will be populated with people in avatar form and by AI-powered virtual characters in human and other forms.

Here is a description of what the metaverse might be:

“The metaverse is the idea of a shared digital universe in the cloud created by merging virtual spaces that are physically persistent together with augmented reality (AR) layered over the real world. The metaverse is singular because the concept includes the sum of all virtual and online worlds along with all AR layers enhancing the physical world… Besides games and hangouts, it will include social media platforms, workplace tools, investing resources, online shops and much more. You’ll be able to immerse yourself completely in this spatial internet using virtual reality (VR) technology or just interact with bits of it that are layered over your physical space via AR. Instead of a profile picture, you’ll be represented by a complete digital avatar or persona. You’ll be able to meet up with your friends’ digital personas and wander around visiting virtual places and attending virtual events.” https://history-computer.com/metaverse-the-complete-guide/

For those interested in how Facebook’s metaverse might be designed in stages see this excellent article from Avi Bar-Zeev, veteran developer of and commentator on all things eXtended Reality (XR).

What does the metaverse mean for teachers and students?

1. Be curious but don’t believe the hype: There is a fair bit of publicity around the metaverse, and this will infiltrate the EdTech space – just remember that the metaverse isn’t here yet (at least in a scaled-up interoperable way), and some suggest it may never arrive. So, it’s good to be intrigued without buying into the hype.

2. Keep up with current research on immersive learning: We are still in the early days of building the evidence base for the effectiveness of immersive technologies for learning using headset-mediated VR and augmented reality experienced through glasses or via screen, especially in schools.  Results are promising but ongoing rigorous research is needed so that we can confidently embed immersive learning into school classrooms in ways that make pedagogical sense and align with curriculum across subject areas. Asking questions about the evidence base and keeping up with the research on immersive learning is vital as knowledge about this will allow us to ask the right educational questions as the metaverse evolves.  

3. Get interested in the (dry) but important areas of privacy law, digital legislation and regulation, and AI ethics: The idea of the metaverse only amplifies existing concerns regarding the automated harvesting, sharing and use of data without user consent including biometric data which is about and of the user body (facial recognition, pupil dilation, gaze and movement tracking etc.) and which can be highly identifying. There are many different forms of biometric data and plenty of biometric harvesting tools available and so we need to watch this space carefully. Automated nudging of behaviour and the affective moods of users will be diffused through the metaverse as current visions see this as a place to advertise and sell products to us as well as collect our personal data in ways which will be highly embodied and emotional. The inclusion of cameras in smart glasses and VR headsets adds another layer of complexity to maintenance of privacy. The Internet of Things will seamlessly fuse with the Internet of Bodies creating legal, ethical and social dilemmas for all of us, personally and professionally. Children and young people will be differently impacted at each stage of their physical, cognitive, moral, and social development. The teaching profession needs to ask who will regulate the metaverse, define its standards, and build and control its infrastructure and content, as this should inform decision making on procurement of technology for schools. No teacher wants to bring unethical technology into the classroom and so we need to start understanding and applying ethical frameworks now and into the future as the metaverse merges with aspects of our everyday lives in work, leisure and learning.

4. Empower children and young people to have a say in what the metaverse should be: Look for places in the curriculum where students can investigate and use the technologies related to the metaverse as well as explore public and industry discourse about its ethical and social implications. Such opportunities should expand the boundaries of digital literacy education to take in civics and citizenship, the environmental impacts of technology, ideas about human-machine relationships, and re-formed conceptions of learning, creativity and identity in the new machine age. Some industry doyens, such as the CEO of the child-targeted Roblox gaming platform which has 42 million daily users logins, suggest that children are already in a proto-metaverse and that one day such platforms will be pivotal to a metaverse providing everything from learning, shopping and business communication tools. Schooling systems rarely recognise the digital leisure life of children and youth, and yet industry is watching and factoring this into their plans for the metaverse. It is important that we as educators facilitate children’s critical engagement and agency in this space so that they are not viewed just as consumers or as data points. The voices and visions of children and young people should be integral to shaping a metaverse which upholds human rights including the rights of child.

The post bought to you by A/Prof Erica Southgate who is looking forward to having a snazzy Star Trek Borg avatar in the metaverse.

P.S. For those interested, here is the full Facebook Meta announcement.

Snow Crash novel cover featured in this post is from https://www.amazon.com/Snow-Crash-Neal-Stephenson/dp/0553380958

State of eXtended Reality (XR) and Learning Report

The inaugural Immersive Learning Research Network ‘State of XR & Immersive Learning Outlook Report’ has recently been released. eXtended Reality (XR) is an umbrella term for virtual, augmented and mixed reality technologies and immersive learning is a concept used to cover education via these technologies. Associate Professor Erica Southgate, Lead Researcher on the VR School Study, was one of a hundred international experts consulted as part of the report. She is quoted several times on the pedagogical and ethical implications of using VR in schools. This free report is a must read for educators everywhere and can be downloaded here – https://immersivelrn.org/stateofxr_2021/

New report & infographics on immersive learning

A/Prof Erica Southgate was commissioned by the Australian Government to produce research on emerging technologies for schools including current state-of-evidence, and pedagogical, practical and ethical advice. The project produced the Artificial Intelligence and Emerging Technologies  (virtual, augmented and mixed reality) in Schools Research Report, a short read version of the report written for teachers and infographic posters for students. You can find these here:

Full report – Artificial Intelligence and Emerging Technologies in Schools Research Report 

Short Read on Virtual Reality and Augmented Reality in Schools

VR and AR infographics for students

The spiders are coming! VR guardian systems are not always enough

Fully immersive VR is a truly embodied experience. You move and interact with virtual objects and characters and, if the virtual environment is networked, with other players. It’s not like watching a movie, it’s like being in it and you can make things happen. This feeling of ‘being there’ in the virtual world is called presence or, when you are with others, social presence.

Immersive VR systems (Oculus Rift or HTC Vive) are designed so that the user is ‘protected’ or ‘contained’ by a virtual Guardian or Chaperone system. These systems consist of a 3D grid cage which pops up when the user strays beyond the safe, object free area that they have set up when configuring the equipment (see the screenshot below for Oculus Rift). Guardian systems temporarily break the sense of immersive presence by providing a visual cue that the user needs to move back into the safe zone.

Guardian system pic for blog

During phase 1 of the VR School Project, we observed that students moved in very different ways especially in Minecraft VR where there is a great deal of autonomy in the open world game.

Some students moved very little, favoring small hand gestures and head movements and minor body rotations. Others rotated a lot but within a fairly restricted footprint but moved their heads, hands and arms more freely. There were also students who were very kinetic; they danced, boxed, galloped on the spot on virtual horses, waved their arms around, crouched down, kicked and repeatedly rotated, often getting the tether (which attaches the headset to the laptop) wrapped around their bodies.

All students in VR needed supervision, even the less active movers. In the VR School project, either the researcher or another students acted as a ‘spotter’. The spotter’s role was to make sure that the students in VR did not collide with objects or student spectators. This role was necessary because the engineered solution to safety, in this case the Guardian system, was sometimes ‘ignored’ by students. I have put the word ‘ignored’ in quote marks because it did not appear that students consciously put themselves at risk of bumping into objects. Rather, some students appeared to be so immersed that they automatically continued their actions outside of the safe area and seemed surprised when the spotter told them they were too close to objects and needed reorientation.

Furthermore, it appeared that the intensity of immersive VR could occasionally trigger a flight or fright response. For example, on one occasion when using the survival mode of Minecraft VR, a student was violently startled when spiders began to approach her. She began to crab-walk sideways at speed and the researcher had to speak loudly to her and place a hand on her shoulder to stop her running off.

There is certainly much more research that needs to be done on the adequacy of Guardian systems in breaking intense feelings of presence in VR, especially for those who are new to the experience but also in relation to startle responses. Some research suggests that young people can become so immersed in virtual and augmented reality environments that they enact unsafe behaviour due to a lack of awareness.

In most cases the Guardian system combined with the physical sensation of being tethered broke the feeling of presence enough so that student regulated their own safety in VR. The current version of the Oculus Rift is tethered, however the new Oculus Go is not. There are certainly safety issue to be explored with untethered design and practical and duty of care issues regarding the need for constant supervision of students who are in immersive VR. Much more public discussion regarding these issues is required.

 

Associate Professor Erica Southgate

What do we know about highly immersive technology and kids?

What is highly immersive technology and what does the research say about using it with children and young people?

The increasing availability of highly immersive virtual, augmented and mixed reality technology that often uses head-mounted displays (or headsets) has raised questions about its safety and ethical implications in educational settings,  workplaces and for leisure. However, little is known about the impact of highly immersive experiences on children and young people.

While there is no accepted definition of ‘highly immersive’, it is reasonable to say that there are some new technologies that can create very intense feeling of presence or ‘being there’ in virtual and augmented spaces. These technologies allow for a high degree of interaction and autonomy. Different types of technologies and software applications produce different levels of feeling immersed and there is still much work to be done on categorising levels of immersion and their effects on different groups of people. As part of the VR School project we are using the Oculus Rift. This technology does offer high levels of immersion particularly in virtual environments that allow navigation, manipulation, interaction and free play.

The other day I was flying in Minecraft VR, soaring high above the landscape. I was enjoying the wonder and freedom of virtual flying, until I needed to land! As I double clicked the controller and began to descend, my stomach rose to my mouth, I gasped, closed my eyes and braced to hit the ground. When I took the headset off, I was in a crouching position, knees still bent to absorb the ‘impact’.

Highly immersive technologies create cognitive, affective and sensory experiences that can often feel very ‘real’. The reactions of people using this type of technology can range from joy to terror depending on what they are experiencing and their past history. This is why we need to think carefully and ethically about the use of such technology. This is especially true when using immersive technology with children and young people because they are at different developmental stages compared to adults and this can affect how they feel, understand and react to immersive experiences.

The problem at this relatively early stage is that there is very little research conducted with children and young people using these technologies. What research there is indicates a need to explicitly bring together evidence from the child development literature with established ethical principles and our knowledge of the affordances or features of technologies.

While there are a number of ethical principles to consider, beneficence is a key one. Beneficence focuses on the welfare of people and a commitment to ‘do no harm’, especially in relation to children and youth. So let’s consider beneficence in relation to what we do know from research on immersive technology and children.

We do know that virtual reality has been used to good effect for paediatric acute pain distraction in clinical settings although there is poorer evidence on chronic pain distraction (Shahrbanian et al., 2012).  So in this instance, VR is certainly not doing harm.

There is also a documented experiment using a virtual roller coaster ride which compared the prefrontal brain arousal of adults & children (mean age 8.7 years). This experiment found that children were much more susceptible to the arousing impact of audio/visual stimuli and appeared unable to critically evaluate and monitor their experience or inhibit their sense of presence in the virtual environment. In other words, because of their developmental stage, children were more strongly drawn into the experience of the roller coaster ride. Because children were unable to regulate the intensity of the experience in the same way adults could, the authors concluded that there should be more reluctance to ‘expose children to emotional virtual reality stimuli as currently practiced’ (Baumgartner et al., 2008). Given this evidence, it is fair to say that some immersive experiences may cause distress because the developmental stage of a child’s brain does not allow it to regulate the intensity of the experience in the same way an adult brain can.

Between the ages of 3-12 years children gradually develop the ability to distinguish between fantasy and reality (Sharon & Woolley, 2004).  Ask any group of children between these ages if they believe in Santa and you will find that there will be an age variation between those who believe versus those that don’t – I admit I still believed in Santa until I was 11. The ability to distinguish fantasy and reality reflects individual social and cognitive development. It is important to consider this in relation to the use of highly immersive technology.

For example, Segovia et al. (2009) found that some primary (elementary) school aged children exposed to the virtual reality environment of swimming with Orcas developed a ‘false memory’ of the experience:  ‘The media richness of the mental imagery…was high enough to be confused with the richness of an event in the physical world’. Similarly in another experiment, 50% of primary school aged children believed that an experience in immersive VR was real one week after being put in the virtual environment (Stanford VHIL, 2015).

And its not just young children that we need to be concerned about. In the outdoor augmented reality game, Alien Contact, older students (aged 11-16 years) asked researchers if aliens had actually crashed at their school and if the researchers were FBI agents (Dunleavy et al., 2009).

Just because a technology can afford certain immersive experiences doesn’t mean they will be psychologically appropriate or safe for all children and young people. There are a number of aspects to consider before using immersive technologies with children and youth as the diagram below indicates:

Diagram VR

Diagram: Conceptual framework for considering aspects of immersive environments in a developmental context (Southgate, Smith & Scevak, 2017).

It’s important that as new immersive technologies become widely adopted that educators engage with questions about their safe and ethical use in the context of what we know about the cognitive, social, moral and affective development of the child and long-held ethical principles such as beneficence. A careful, evidence-led approach is required to the use of highly immersive technologies in schools. This is part of our duty of care towards students.

If you would like to know more about ethical principles, child development and immersive technologies you can read a paper we have written on the topic. Please feel free to leave a comment or contact me if you would like to discuss.

Erica Southgate, Associate Professor of Education and VR flying aficionado.

 

References

  • Baumgartner, T. et al. (2008). Feeling present in arousing virtual reality worlds: prefrontal brain regions differentially orchestrate presence experience in adults and children. Frontiers in Human Neuroscience, 2, 8
  • Dunleavy, M. et al. (2009). Affordances and limitations of immersive participatory augmented reality simulations for teaching and learning. Journal of Science Education and Technology18(1), 7-22.
  • Segovia, K. & Bailenson, J. (2009). Virtually true: Children’s acquisition of false memories in virtual reality. Media Psychology, 12(4), 371-393.
  • Shahrbanian, S. et al. (2012). Use of virtual reality (immersive vs. non immersive) for pain management in children and adults: A systematic review of evidence from randomized controlled trials. European Journal of Experimental Biology2(5), 1408-1422.
  • Sharon, T. & Woolley, J.D. (2004). Do monsters dream? Young children’s understanding of the fantasy/reality distinction. British Journal of Developmental Psychology, 22(2), 293-310.
  • Southgate, E., Smith, S.P. & Scevak, J. (2017). Asking ethical questions in research using immersive virtual and augmented reality technologies with children and youth. In Virtual Reality (VR), 2017 IEEE Proceedings (pp. 12-18). IEEE. (E1) http://ieeexplore.ieee.org/abstract/document/7892226/
  • Stanford University Virtual Human Interaction Lab (2015). vhil.stanford.edu/news/2015/stanford-studies-virtual-reality-kids-andthe-effects-of-make-believe – accessed 19 Sept 2016.

 

 

 

Blog at WordPress.com.

Up ↑