VR safety and hygiene protocol for the Athelstone School Study

The VR School Study has always been concerned with safe and ethical use of immersive technologies especially with children and young people, and in schools. We were the first to create safety resources and procedures for teachers and students and, in the age of the Covid-19 pandemic, we continue to make safety and hygiene the top priority.

Hence, we have developed a safety protocol and set of related resources to address hygiene and safety for VR headsets that use mobile phones – this is the type of equipment we are using for the 360° VR content creation that is the basis of the Athelstone Italian language learning study. The resources were developed for training primary (elementary) school aged children in Year 6 (11-12 years old).

Context always matters when assessing and addressing risk including VR use in classrooms, especially during a pandemic. When undertaking risk assessment and development of protocols and resources to mitigate risk for VR (or any equipment digital or otherwise), each school must address their local conditions, follow expert advice on hygiene and safety, and develop their own risk assessment, protocols and resources.

For the Covid-19 state-of-play in South Australia (SA), where Athelstone School is located, see the SA government updates here – https://www.covid-19.sa.gov.au/home/dashboard and the SA Department of Education website on Covid-19 here – https://www.education.sa.gov.au/supporting-students/health-e-safety-and-wellbeing/covid-19-coronavirus. Our protocol and resources were developed in August 2020 when the Covid-19 situation was reflected in the snapshot from the government website below:

Here is a summary of the risks identified and the proposed mitigation strategies developed in relation to context:

Potential riskMitigation strategy
Covid-19 transmission through student sharing of VR headsets and phones– Assign each student their own headset, box for headset storage and phone
– Label headsets, storage box and phone with the name of the student to allow students and teachers to monitor the use of personally assigned equipment.
– Teachers train students in not sharing headsets, storage box or phones and to always return headset to its assigned box.
– Reinforce safety and hygiene messages and procedure in class at the beginning of the lesson and with a poster displayed at the front of the classroom and with a laminated version on each desk.
– Teachers in-class monitoring that students use their assign headset and pack headset into assigned box.
– For the duration of the research no other students or classes use equipment.  
Lack of compliance with Education Department Covid-19 advice for schools  – Principal does daily online checks of Department’s Covid-19 advice for schools to ensure compliance and that the project’s risk mitigation strategies do not contravene advice.
Poor VR headset and phone hygiene– At the beginning and end of each lesson students wash/sanitise their hands.
– At the end of each lesson students use disposable sanitiser wipes to clean their assigned headset (except for lenses) and phone at the end of each lesson and return VR headset to its assigned box.  
Teacher handling of phone after it’s been sanitised may put them at risk  – Teachers use disposable gloves to collect phones from students and connect these to charging station.
Desk contamination with from VR headset– At the end of the lesson and after wiping their headsets and phones, students use sanitiser wipes to clean their desk and the laminated safety poster which is on their desk.  
Improper disposal of used sanitiser wipes and gloves– At the end of each lesson students dispose of used disinfectant/alcohol cloths in plastic bag that has no tears or holes in it and this is tied shut by teachers who dispose of it directly into school skip bin.
– Teachers dispose of used gloves in plastic bag that has no tears or holes in it and this is tied shut by teachers who dispose of it directly in to school skip bin.  
Students experience cybersickness– Students trained to recognise signs of cybersickness or discomfort and to immediately take headset off and tell teacher.
– The training message is reinforced on safety poster displayed in classroom with a laminated version on each desk.
– Students buddy-up to check on each other during use of headset.
– Limit of 15 minutes per lesson in headset monitored by teacher and student-buddy.  
Students move out of seat with VR headset on and injury themselves or others– Students receive training on staying seated while they have the headset on.
– The training message is reinforced on safety poster displayed in classroom with a laminated version on each desk.
– Students buddy up to make sure each remains seated and teachers monitor this in class.  

Here are the teacher-delivered safety and hygiene training script for students:

Here is the teacher safety and hygiene classroom procedure:

The ‘Be VR Safe’ poster for display in classrooms and on student’s desks is a child-friendly version of the safety and hygiene procedure outlined in the training script.

All these resources can be downloaded from the resources section of this website.

On a related note – Since the beginning of the pandemic, the VR research and industry sectors have been working overtime to define and address safe use of high-end VR (where the computing is in the headset) and although there is no definitive advice this article covers some of the issues –  https://interactions.acm.org/blog/view/evaluating-immersive-experiences-during-covid-19-and-beyond

Until next time, stay safe.

A/Prof Erica Southgate

Cover photo by cottonbro from Pexels

New study on 360° VR for primary school language learning

The VR School Study is in a new partnership with Athelstone School, a South Australian primary (elementary) school. The Athelstone School research will investigate how 360° VR content creation can be used for learning Italian. Funded by the South Australian Department of Education’s Innovative Language Program Grants (ILPG) program, Year 5 and 6 students will use the VRTY platform to create and share their own virtual worlds guided by the Australian curriculum. This action research has already undergone a pilot phase that happened in the second half of 2019 and we are now entering into the first of  several research cycles in order to explore technical challenges, developmental appropriateness of 360° VR, and the efficacy and innovative potential of 360° VR content creation for learning another language.

The teacher co-researchers on the project are language teachers Angelica Cardone (far left behind) and Jo Romeo (left front on top image), and Principal Gyllian Godfrey (back centre) who is also a qualified language teacher.  Gyllian provided this reflection on the project:

“The ILPG has offered the opportunity to test the benefits of VR for students
learning languages at primary level and has also upped-the-ante by making
students the creators of their own content, by developing non-linear language
learning narratives for themselves and their peers.”

In our next blog, the folks from VRTY explain how students can use their platform for content creation and learning.  Stay tuned.

Bought to you by A/Prof Erica Southgate who is taking up a lot of room (right front) in the photo above.

Some cool stuff from the VR Book

This article was first published by the Australian Association for Research in Education (29 June, 2020). I’m sharing it here because it highlights some interesting findings from the book.

Virtual Reality in school education: Australia leads the way with groundbreaking research

By Erica Southgate

In 2016, I attended a meeting and fortuitously sat next to the (now retired) principal of Callaghan College who asked me what type of research I’d like to do in schools. At the time a new high-end, highly immersive type of virtual reality (VR) hardware called the Oculus Rift had been released. This type of VR equipment was costly and needed an expensive computer to run but offered entry into amazing worlds. It provided high fidelity environments to be explored through gestural interaction via controllers that allowed you to use your virtual hands to interact with virtual objects and avatars (either other people or computer characters) and navigate in ways that felt incredibly embodied (I am addicted to flying and jumping off clouds in VR).

 I made a gentle pitch that I’d like to work with teachers to embed this technology into classrooms to see how it could be used for learning but that I had no idea what we might find. And so began the VR School Study, a collaboration with Callaghan College and later, Dungog High School, both government high schools in NSW, Australia.  It became the first research internationally to embed high-end VR in school classrooms.

VR School Study

The VR School Study is ongoing participatory research that aims to explore the use of immersive virtual reality in real classrooms. We focus on how VR can be used to enhance learning, its relationship to curriculum, and its implications for pedagogy. And we examine all the practical, ethical and safety issues that come with integrating emerging technology in classrooms. At the end 2018, the study reached a major milestone with the completion of two major case studies into the use of the technology in secondary schools.

An ‘arduous’ adventure in emerging technology

IN 2018, on the last day of research at Callaghan College, I interviewed two teachers about what it was like to embed an emerging technology in the classroom. The response was, ‘Arduous comes to mind.’ While we did have a laugh, the comment summed up a range of issues encountered during the research.

Space to accommodate VR and safety concerns

Trying to find an available classroom space large enough to accommodate the play areas needed for this VR, which is best used standing and moving around, proved difficult. On one campus we managed to get a room with a small storeroom off it that squeezed in three sets of VR equipment with play areas while at the other we had a larger former lab-preparation room attached to a classroom. Both VR rooms were beyond the immediate supervisory gaze of the teacher and so required me or a student to act as a safety ‘spotter’ to ensure there were no collisions with walls, furniture or peers. Even though there is a built in ‘Guardian System’ (a pop-up virtual cage mapped to the real environment you should stay within), some students became so immersed that they ignored it and needed intervention. Even now with ‘pass through’ cameras in some VR headsets (these allow the user to see the outside environment when they go beyond the Guardian System) some people become so immersed and are interacting with such speed that they can run into objects. Engineered safety solutions are not always enough to maintain safety.

Network and server issues

Getting the tech to work within the confines of the school internet network proved difficult. Game stores that allow multiplayer environments were blocked and internet work-arounds required. Teachers had to set-up individual student accounts which was time-consuming and often update applications in their own time. Our screen capture video, which showed a first-person view of what the student was seeing and doing in a virtual environment, indicated that the technology failed 15% of the time due to network, server and VR tracking drop-out. One of my favourite moments in student humour and resilience was when I heard one boy say to another as they who were fixing a server issue for the third time, “Aren’t you glad you signed up for this?”.

Content mastery and creativity through collaboration

Students were given the highest quality VR and ‘sandbox’ applications, such as Minecraft VR and Tilt Brush which allowed them to create in virtual environments without needing to code. Combined with clever curriculum design they undertook self-directed formative assessment tasks.

In Year 9 science this involved groups researching and developing a model of a body organ in Minecraft VR. The results were an astounding mix of scientific knowledge melded with creative endeavour developed through group problem-solving and collaboration inside and outside of VR.

Brain from up high

One group produced an anatomically correct, labelled eyeball which was toured by via a rollercoaster while another built a skyscraper of a brain sitting atop a spinal cord which you flew up to interact with engineered components representing neurons. While in VR, students narrated from memory the parts and function of the brain. Analysis of the screen capture video using a framework adapted from  work by Assistant Professor in Learning and Learning Processes the University of Oulu, Jonna Malmberg, indicated that the majority of students used the creative properties of VR to engage in highly collaborative science learning.

Inside the brain

At Dungog High School a senior drama class used single-player 3-D sculpting program Tilt Brush, as an infinite virtual design studio to explore symbolism in set design at real life scale and beyond. Students worked in groups to quickly prototype symbolic elements of their directorial vision with peers and the teacher moving in and out of VR to offer feedback. Mistakes were erased or changes made at the press of a button. The virtual studio of Tilt Brush melded with the drama studio to offer students an opportunity to view their design in 3D from the perspective of an audience member, director, designer or actor. All they needed to do was teleport round the virtual environment to do this.

Let’s leave behind the EdTech evangelism

An admission – I’m not a fan of the type of innovation discourse which permeates university managerial-speak and is associated with EdTech (educational technology) evangelism. This type of talk conjures up images of momentous leaps in ways of doing and knowing with the trope of the lone (male, yes it is a gendered) genius leading the charge with their vision of the future.

Innovation is incorrectly depicted as a development shortcut detached from contexts and the years of work that yield incremental improvements and insights, as Stanford University Director, Christian Seelos, and colleague Johanna Mair, argue. They warn against evaluating innovation only on positive outcomes as this can stifle experimentation required to progress an initiative in difficult or unpredictable environments.

This aligns with critical studies in EdTech where research is on the ‘state-of-the-actual’ rather than the ‘state-of-the-art’, as Distinguished Research Professor in the Faculty of Education, Monash University, Neil Selwyn reminds us. It entails moving away from trying to ‘prove’ a technology works for learning to scrutinizing what actually takes place especially in contexts that are not the ‘model’ well-resourced schools where technologies are often tested.

Teleporting away for now

As I have argued elsewhere, to get the best ethical and educational outcomes with emerging technologies we must carefully incubate these in schools (and not just resource-rich ones) in collaboration with willing teachers so that we can document incremental ‘innovation’ through ‘state-of-the-actual’ reporting. This can be an arduous project but one full of authentic and valuable insights for those willing to go on a research and pedagogical adventure. It’s this type of evidence, not EdTech evangelism, that we need.

For those who want more. In May 2020, I published findings from the study in Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (Routledge). As co-researchers, teachers from Callaghan College and Dungog High School contributed to their respective chapters in this book. The book offers new pedagogical frameworks for understanding how to best use the properties of VR for deeper learning as well as a ‘state-of-the-actual’ account of the ethical, practical and technical aspects of using VR in low-income school communities.

Erica Southgate (PhD) is Associate Professor of Emerging Technologies for Education at the University of Newcastle, Australia. She is lead author of the recent Australian Government commissioned report, Artificial intelligence and emerging technologies (virtual, augmented and mixed reality) in schools research report, and a maker of computer games for literacy learning. Erica is always looking for brave teachers to collaborate with on research and can be contacted at Erica.southgate@newcastle.edu.au. Erica is on Twitter@EricaSouthgate

This article was originally published on EduResearch Matters. Read the original article.AARE

NEW book from the VR School Study

Out of three years of co-research with teachers comes the first book (of many I hope) from the VR School Study. The book, Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (2020 Routledge) provides a brand new pedagogical framework with scaffolds for educators on how to use the technology for deeper learning. Case studies from Callaghan College and Dungog High School are included with a focus on metacognition, collaboration and creativity.

Blog SS

Immerse + Imagine with Michelle Brown

Could you tell me about your professional background Michelle?

I studied Multimedia in the early 2000s and began to incorporate technology into my arts practice, I did a lot of computer design work for musicians, bands and venues back then. About this time I also started working and playing in the music industry. I ended up managing one of Australia’s iconic community radio stations, 4ZZZ in Brisbane, so I didn’t have much time to spend on my art, but I did manage to keep producing work occasionally! Being connected to an industry like music gave me a great bunch of opportunities but I decided to leave 4ZZZ in 2016 to concentrate on a career creating art and producing content.

When did you first get interested in VR and why?

In 2016 while I was finishing up my management role I saw some really cool stuff being created with augmented and virtual reality. I started to look into what I needed to get a VR set up and also started producing AR artwork, I already had the animation and illustration skills plus the tech knowledge so it all just kind of fell into place! The biggest barrier for VR is the expense of the equipment however things are getting cheaper with stand-alone headsets like the Quest available, at the time I had to invest in a PC (I was strictly a mac user for a long time!) and a HTC Vive. Some of the artists I saw producing VR artwork include Liz Edwards, a very cool 3D artist, which got me into a VR art app called Tilt Brush, which I’ve used ever since in my workflow, from music videos to large scale installation work.

How do you currently use VR?

I mainly work with some of the VR art apps/programs like Google’s Tilt Brush, Gravity Sketch and some of the animation programs like Tvori. I paint and create environments and worlds in VR that are the base for music videos, installation work and more. Just like a 3D modelling program, many of the VR apps allow you to export 3D creations that can be used in other apps, like Unity, or traditional film editing software like Premiere Pro.

I also teach workshops in using VR and AR in arts practice, so showing ways that you can integrate illustration and animation with mobile apps and teaching people about the art apps I’ve mentioned.

What are your thoughts on VR and the creative process?

For me I love it, it really cuts down on the amount of time I spend hand illustrating or animating. The same with 3D modelling, it would take me possibly 3 times the amount of time to create something in Cinema4D that I can model quickly in VR as it’s more attune to actual sculpting/painting.

I also feel that VR can create more of an impactful experience, when you are in a headset it’s easy to ignore everything else going on and just concentrate on the narrative or user experience, no social media distractions!

What advice would you give teachers and students who are thinking about using VR for creative projects?

Allow a bit of time for all students to have a play in VR, even if you only have one or two headsets! If you are showing students how to use some of the art programs like Tilt Brush, you need to let them have a little time to get comfortable and creative. But also keep in mind taking breaks if you’re in the headset for more than 30 minutes at a time. I also would recommend giving some direction so that students experimenting with VR art have something to focus on rather than just aimlessly painting swirls, for example; get them to paint a favourite animal or cartoon.

What is unique about creating in VR instead of some other medium?

It’s mainly the speed of which I can get an idea out plus the fact it’s in a three dimensional space, it’s just so much quicker for me to produce a visual story. It’s also a way that I can communicate a theme or an idea that links to a social issue that I can address with my installation work, as it allows for more intimacy and less distraction. Being immersed in a 3D environment by yourself in the headset provides a great opportunity to just focus.

Check out Michelle’s VR art and more on her website https://www.thebadlament.com/

MB

Weaving VR through the science curriculum

In schools, it is vital to align the use of technology to the curriculum. We believe it is important to weave VR through student learning in carefully planned and scaffolded ways. This approach makes VR a powerful learning tool rather than a toy. 

In the VR School Research Study, teachers designed a unit of work on body systems related to the NSW Science (biology) syllabus. Within the unit of work, students continued to experience tradition lab-based science learning and explicit teaching. The teachers developed a formative VR assessment task (described below) that carefully scaffolded independent group learning through collaborative research and creativity.

Students had to carefully organise their group effort as they had limited time to complete the task in VR. The unit of work was conducted over about a 6-week period with around 9 of the 22 in-class learning hours designated for VR (we also experienced technical problems which cut into the VR time and some of this time was spent familiarising students with highly immersive experiences and the equipment). We had limited hardware (3 x networked Oculus Rifts with Alienware laptops on each campus) and did not schedule VR time during the last lesson of the day in case a student became cybersick and would be unable to travel home. At most, 4 groups of 3 students could cycle through VR during each 1 hour lesson.

This meant that students had to be very organised with their research and plan and  construct their prototype models outside of VR so that they could import, collectively evaluate and rework the model during their scheduled VR time. This entailed self-regulated learning.

Here is a video example of an internal tour of a human heart – researched, prototyped and annotated in Minecraft by three Year 9 girls. The detailed annotations and fun facts, correct internal structure with an accurate flow of ‘blood’ through the organ, made it an impressive example of deep learning using VR technology. It was an amazing tour experience, even if it was a bit claustrophobic at first! At the end of the video you can see the heart’s external scale as one of the girl’s avatars flies around it.

The formative assessment task given to students is outlined, in full, below:

Overview of the Living World VR task  

In groups of three students, create a diorama (3D representation) using Minecraft of some part (organ or organ system) of the human body that is responsible for sensing and responding to the environment (internal or external).

This will represent a substantial body of work that thoroughly demonstrates your group’s understanding of the structure and function of the selected organ or organ system. It should aim to both inform and engage other Year 9 students and your teacher.

The final audience will be another group of students, and will be experienced in VR (virtual reality) – Oculus Rift. The look and feel of the presentation will be very different when experienced in VR, compared to playing on a console, tablet or PC/laptop. Groups will be required to do some planning and evaluation of their own diorama in VR before the final audience experiences it, so that it is optimised for VR viewing (immerses the audience).

A 3-minute commentated video will also be created by each group.

Instructions

  1. Form groups of three. Allocate roles for each of the group members. Responsibilities may include research, server hosting, building, annotating (placing signs on parts, labelling structures or functions), team leading, VR video commentating, artistic directing and redstone circuit designing. NOTE: Each team member may have multiple responsibilities and could also share responsibilities.
  2. Choose an organ system (e.g. nervous system, endocrine system) or a smaller part of an organ system (such as an organ or group of organs and tissues).
  3. Research the subject of your group’s diorama thoroughly. Decide which aspects of the research will be included in your diorama.
  4. Create a Minecraft world that will be the server for your group’s project. This should be done in Minecraft Windows 10 Edition or Minecraft Pocket Edition (These are the only versions that will be able to network with the version used by Oculus Rift). Ensure that the version used by your group is the same as the version used by Oculus Rift for VR. Other group members join the world in Multiplayer mode.
  5. Build a diorama. Ensure all structures are labelled and all functions explained (signs would be useful for this purpose). Consider presentation concepts such as linear (visitors must follow a path) and freeform (visitors can go anywhere, maybe even fly). Be innovative and creative. Create new or unexpected features.
  6. VR testing. Each group will have 4 VR sessions, lasting about 15 minutes each:

Session 1 – Become familiar with Minecraft in Oculus Rift. No building. Learn to use the touch controls and get around. Learn how to build.

Session 2 – Test diorama in VR. Evaluate whether it is fit for the intended audience. Decide what will be edited before the next VR session.

Session 3 – Record 3-minute commentated video of diorama. Press ‘Windows Button’ + ‘G’ in game to start recording.

Session 4 – Observe another group’s diorama. Provide warm/cool feedback.

Immersive VR: A literature review and infographic for teachers

I was recently commissioned to write a literature review on immersive virtual reality for teachers by the New South Wales Department of Education. The Department kindly distilled the literature review into an infographic to guide teacher practice

The report is: ‘Immersive virtual reality, children and school education: A literature review for teachers.’

I welcome dialogue on the literature review from teachers, researchers and developers – A/Prof Erica Southgate

Top 5 VR School moments (so far)

As educators it’s always good to reflect on our top learning experiences, and so here are my top 5 VR School moments to date.

1. When the tech works it’s magic

It’s no easy feat getting the tech to work for this project. It includes networking the Oculus Rifts so that students can collaborate in Minecraft VR and deploying Window 10 version of Minecraft to desktop and laptop computers or Pocket Edition Minecraft to tablets and  diverse BYOD mobile devices. The school system has a block on game stores and a work-around was needed. And, then there is the issue of glitches like inexplicable loss of tracking, program crashes or the need to reset Guardian systems that have shifted within the tight space of the VR room.  Every time we get through lesson without too many glitches we breathe a sigh of relief.

2. Students are smiling, laughing, dancing and swimming with dolphins in VR

Watching the joy of students in immersive virtual reality is worth the gargantuan effort to address the technical issues. Students in immersive VR are animated as they explore, create, work together and sensation seek (by flying over landscapes or swimming with dolphins). There is spontaneous dancing and singing too. Watching students have  serious fun in the science classroom is just brilliant.

3. Students recognise if they are distracted and refocus back on the learning task

Students remark that all the cool things to do in immersive VR can distract them from getting on with the learning task; however, most do direct themselves and each other back to learning and actively negotiate roles and actions to achieve their goal. Understanding this dynamic is important for future educational applications of the technology.

4. Students collaborate to create new ways to demonstrate their understanding of the topic

Students generally like the challenge of interpreting the learning task to demonstrate their understanding of the topic in new and creative ways; in this case the task is building biological models and delivering unique and fun presentation modes such as tour experiences.  It isn’t possible to predict how students will creatively use the affordances of immersive VR (like manipulation of scale or embodied spatial navigation), but the end results are often positively surprising (like taking the teacher on a flying tour of an enormous plant cross-section or building a hollow root system that can be traversed by other learners).

5. Some girls start asking questions about technology careers

An unexpected consequence of putting the technology into classrooms is that it has prompted girls express interest in the uses and future of the technology and possible careers in the area. Using immersive technologies for learning may spark career conversations about tech jobs with girls and other groups who are under-represented in the industry. This is worth thinking about.

Over and out for now (I am off to swim with those virtual dolphins) – A/Prof Erica Southgate

Feature image: Screenshot of the dolphins in Minecraft.

An update from the VR School Study

As we move into Phase 2 of the VR School Study, the team thought that we would give you a quick video update on what we have learnt so far and what we hope to achieve over the next few months. Here is Associate Professor Erica Southgate with the low down!

And how cool is the featured picture (top). It is a student work sample from Phase 1 of the study. On the left is a bluebell that the student created in Minecraft VR and on the right is how he labelled the cross-section of the flower by drawing on his research on the different parts and functions of a plant.  He took Erica on an amazing guided tour of his creation where they both flew around the flower (like bees) while he explained the meaning of the labelled cross-section to her. It was a thoroughly researched scientific experience and great fun to boot!

Blog at WordPress.com.

Up ↑