Southern Montessori Middle School is excited to launch our VR project. Southern Montessori’s VR project is part of an integrated Humanities and Science unit based on the inquiry question: ‘How can we secure food for our future?’ Students will be using VR to create their own biome, identify problems arising from human impact, and find solutions to these problems. Students will be challenged to demonstrate their learning in a creative and engaging manner.
Southern Montessori Middle School is a mixed age year 7-9 community located in the southern suburbs of Adelaide with a strong focus on academics. We combine our thirty six Year 7, 8 and 9 students together and work in small, ability-based groups following the Australian Curriculum but presented with Montessori principles. We are committed to innovative approaches to learning that are not only relevant and engaging, but also prepare our students for their future.
Teachers Siobhan Curran and Toni Maddock have developed this unit of work and series of activities designed for students to not only think critically and creatively about the content, but also think creatively about how VR technology can be used as a tool to assist their learning. Having not used VR in the past, students and teachers alike are excited to take part in this research and to see what the students can achieve.
This post bought to you by teacher and co-researcher Toni Maddock
This update is from Pembroke School in Adelaide. Ella Camporeale, Assistant Head of Design and Technology and teacher on the VR study, explains how she has developed a unit of work which integrates student 360° VR content creation for her Year 9 Digital Design class:
“I have developed a Semester-long course for my Year 9 Digital Design class using VR as a form of new media for students to demonstrate knowledge about sustainability and to educate others in the school community about this. The learning outcomes from the Australian Curriculum are aligned with the Technologies Learning Area, Year 9 and 10 band. Specifically, the outcomes relate to developing mastery of digital technology, design thinking and digital solutions.
I am dividing the units of work into three topics. We are looking at sustainability more broadly, data on sustainability in the Middle School and the VR project which will allow students to work in groups to create a virtual reality environment on a topic related to sustainability. The data on sustainability we collect will be integrated into the VR component.
We have been looking at the strengths, weaknesses, and opportunities of sustainable practice in the Middle School. This is all leading into the pitch the students will be giving for their VR project. We will narrow this down so groups of students work on a specific topic on sustainability in which they will develop their VR environment. Topics will be green space, water, waste, recycling, energy and materials. We hope to amalgamate the VR scenes each group creates to make a single educational resource on sustainability at school.
Students will undertake a brainstorming activity on how they would like their VR project to look. It may be that they produce a story and develop a more gamified interface with characters designed as markers in the VR scene, it may be an education tool, or produced as a systems pitch. After brainstorming, students will start data collection, setting up interviews and surveys for key school stakeholders. This will allow them to gather and visualise data which will eventually be integrated into their VR project. Finally, students will storyboard and plan the VR component of the project, using a similar process as would be undertaken if using other digital media such as video or animation.
Processes of reflection and iteration will be important as students’ progress through each unit in the project, both in groups and individually.”
Stay tuned for more updates from Pembroke School on their VR journey in 2022.
The VR School Study is in a new partnership with Athelstone School, a South Australian primary (elementary) school. The Athelstone School research will investigate how 360° VR content creation can be used for learning Italian. Funded by the South Australian Department of Education’s Innovative Language Program Grants (ILPG) program, Year 5 and 6 students will use the VRTY platform to create and share their own virtual worlds guided by the Australian curriculum. This action research has already undergone a pilot phase that happened in the second half of 2019 and we are now entering into the first of several research cycles in order to explore technical challenges, developmental appropriateness of 360° VR, and the efficacy and innovative potential of 360° VR content creation for learning another language.
The teacher co-researchers on the project are language teachers Angelica Cardone (far left behind) and Jo Romeo (left front on top image), and Principal Gyllian Godfrey (back centre) who is also a qualified language teacher. Gyllian provided this reflection on the project:
“The ILPG has offered the opportunity to test the benefits of VR for students
learning languages at primary level and has also upped-the-ante by making
students the creators of their own content, by developing non-linear language
learning narratives for themselves and their peers.”
In our next blog, the folks from VRTY explain how students can use their platform for content creation and learning. Stay tuned.
Bought to you by A/Prof Erica Southgate who is taking up a lot of room (right front) in the photo above.
This article was first published by the Australian Association for Research in Education (29 June, 2020). I’m sharing it here because it highlights some interesting findings from the book.
Virtual Reality in school education: Australia leads the way with groundbreaking research
By Erica Southgate
In 2016, I attended a meeting and fortuitously sat next to the (now retired) principal of Callaghan College who asked me what type of research I’d like to do in schools. At the time a new high-end, highly immersive type of virtual reality (VR) hardware called the Oculus Rift had been released. This type of VR equipment was costly and needed an expensive computer to run but offered entry into amazing worlds. It provided high fidelity environments to be explored through gestural interaction via controllers that allowed you to use your virtual hands to interact with virtual objects and avatars (either other people or computer characters) and navigate in ways that felt incredibly embodied (I am addicted to flying and jumping off clouds in VR).
I made a gentle pitch that I’d like to work with teachers to embed this technology into classrooms to see how it could be used for learning but that I had no idea what we might find. And so began the VR School Study, a collaboration with Callaghan College and later, Dungog High School, both government high schools in NSW, Australia. It became the first research internationally to embed high-end VR in school classrooms.
VR School Study
The VR School Study is ongoing participatory research that aims to explore the use of immersive virtual reality in real classrooms. We focus on how VR can be used to enhance learning, its relationship to curriculum, and its implications for pedagogy. And we examine all the practical, ethical and safety issues that come with integrating emerging technology in classrooms. At the end 2018, the study reached a major milestone with the completion of two major case studies into the use of the technology in secondary schools.
An ‘arduous’ adventure in emerging technology
IN 2018, on the last day of research at Callaghan College, I interviewed two teachers about what it was like to embed an emerging technology in the classroom. The response was, ‘Arduous comes to mind.’ While we did have a laugh, the comment summed up a range of issues encountered during the research.
Space to accommodate VR and safety concerns
Trying to find an available classroom space large enough to accommodate the play areas needed for this VR, which is best used standing and moving around, proved difficult. On one campus we managed to get a room with a small storeroom off it that squeezed in three sets of VR equipment with play areas while at the other we had a larger former lab-preparation room attached to a classroom. Both VR rooms were beyond the immediate supervisory gaze of the teacher and so required me or a student to act as a safety ‘spotter’ to ensure there were no collisions with walls, furniture or peers. Even though there is a built in ‘Guardian System’ (a pop-up virtual cage mapped to the real environment you should stay within), some students became so immersed that they ignored it and needed intervention. Even now with ‘pass through’ cameras in some VR headsets (these allow the user to see the outside environment when they go beyond the Guardian System) some people become so immersed and are interacting with such speed that they can run into objects. Engineered safety solutions are not always enough to maintain safety.
Network and server issues
Getting the tech to work within the confines of the school internet network proved difficult. Game stores that allow multiplayer environments were blocked and internet work-arounds required. Teachers had to set-up individual student accounts which was time-consuming and often update applications in their own time. Our screen capture video, which showed a first-person view of what the student was seeing and doing in a virtual environment, indicated that the technology failed 15% of the time due to network, server and VR tracking drop-out. One of my favourite moments in student humour and resilience was when I heard one boy say to another as they who were fixing a server issue for the third time, “Aren’t you glad you signed up for this?”.
Content mastery and creativity through collaboration
Students were given the highest quality VR and ‘sandbox’ applications, such as Minecraft VR and Tilt Brush which allowed them to create in virtual environments without needing to code. Combined with clever curriculum design they undertook self-directed formative assessment tasks.
In Year 9 science this involved groups researching and developing a model of a body organ in Minecraft VR. The results were an astounding mix of scientific knowledge melded with creative endeavour developed through group problem-solving and collaboration inside and outside of VR.
Brain from up high
One group produced an anatomically correct, labelled eyeball which was toured by via a rollercoaster while another built a skyscraper of a brain sitting atop a spinal cord which you flew up to interact with engineered components representing neurons. While in VR, students narrated from memory the parts and function of the brain. Analysis of the screen capture video using a framework adapted from work by Assistant Professor in Learning and Learning Processes the University of Oulu, Jonna Malmberg, indicated that the majority of students used the creative properties of VR to engage in highly collaborative science learning.
Inside the brain
At Dungog High School a senior drama class used single-player 3-D sculpting program Tilt Brush, as an infinite virtual design studio to explore symbolism in set design at real life scale and beyond. Students worked in groups to quickly prototype symbolic elements of their directorial vision with peers and the teacher moving in and out of VR to offer feedback. Mistakes were erased or changes made at the press of a button. The virtual studio of Tilt Brush melded with the drama studio to offer students an opportunity to view their design in 3D from the perspective of an audience member, director, designer or actor. All they needed to do was teleport round the virtual environment to do this.
Let’s leave behind the EdTech evangelism
An admission – I’m not a fan of the type of innovation discourse which permeates university managerial-speak and is associated with EdTech (educational technology) evangelism. This type of talk conjures up images of momentous leaps in ways of doing and knowing with the trope of the lone (male, yes it is a gendered) genius leading the charge with their vision of the future.
Innovation is incorrectly depicted as a development shortcut detached from contexts and the years of work that yield incremental improvements and insights, as Stanford University Director, Christian Seelos, and colleague Johanna Mair, argue. They warn against evaluating innovation only on positive outcomes as this can stifle experimentation required to progress an initiative in difficult or unpredictable environments.
This aligns with critical studies in EdTech where research is on the ‘state-of-the-actual’ rather than the ‘state-of-the-art’, as Distinguished Research Professor in the Faculty of Education, Monash University, Neil Selwyn reminds us. It entails moving away from trying to ‘prove’ a technology works for learning to scrutinizing what actually takes place especially in contexts that are not the ‘model’ well-resourced schools where technologies are often tested.
Teleporting away for now
As I have argued elsewhere, to get the best ethical and educational outcomes with emerging technologies we must carefully incubate these in schools (and not just resource-rich ones) in collaboration with willing teachers so that we can document incremental ‘innovation’ through ‘state-of-the-actual’ reporting. This can be an arduous project but one full of authentic and valuable insights for those willing to go on a research and pedagogical adventure. It’s this type of evidence, not EdTech evangelism, that we need.
For those who want more. In May 2020, I published findings from the study in Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (Routledge). As co-researchers, teachers from Callaghan College and Dungog High School contributed to their respective chapters in this book. The book offers new pedagogical frameworks for understanding how to best use the properties of VR for deeper learning as well as a ‘state-of-the-actual’ account of the ethical, practical and technical aspects of using VR in low-income school communities.
Erica Southgate (PhD) is Associate Professor of Emerging Technologies for Education at the University of Newcastle, Australia. She is lead author of the recent Australian Government commissioned report, Artificial intelligence and emerging technologies (virtual, augmented and mixed reality) in schools research report, and a maker of computer games for literacy learning. Erica is always looking for brave teachers to collaborate with on research and can be contacted at Erica.southgate@newcastle.edu.au. Erica is on Twitter@EricaSouthgate
Fire up your pedagogical imagination by exploring the learning affordances (properties) of virtual reality with our new classroom poster Infographic on the Power of Virtual Reality for Education and Top Tips for Teachers sheet, available for free download here:
I was recently commissioned to write a literature review on immersive virtual reality for teachers by the New South Wales Department of Education. The Department kindly distilled the literature review into an infographic to guide teacher practice
As we move into Phase 2 of the VR School Study, the team thought that we would give you a quick video update on what we have learnt so far and what we hope to achieve over the next few months. Here is Associate Professor Erica Southgate with the low down!
And how cool is the featured picture (top). It is a student work sample from Phase 1 of the study. On the left is a bluebell that the student created in Minecraft VR and on the right is how he labelled the cross-section of the flower by drawing on his research on the different parts and functions of a plant. He took Erica on an amazing guided tour of his creation where they both flew around the flower (like bees) while he explained the meaning of the labelled cross-section to her. It was a thoroughly researched scientific experience and great fun to boot!
This is the second article we have published from phase 1 of the VR School Study. This article reviews the literature on immersive virtual reality and children, and examines ethics and safety, technical issues, and the role of play when learning in highly immersive virtual reality. It is co-authored with teachers from Callaghan College, Newcastle, Australia.
This paper reflects on the ethical and safety implications of implementing highly immersive virtual reality in junior high school classrooms from data collected during phase 1 of the VR School Study.
It should be referenced (APA 6th):
Southgate, E., Smith, S.P., Eather, G., Saxby, S., Cividino, C., Bergin, C., … Scevak, J. (2018). Ethical conduct and student safety in immersive virtual reality: Protocols and resources from the VR School Research Project. IEEE VR Third Workshop on K-12+ Embodied Learning through Virtual & Augmented Reality (KELVAR) which is a part of the IEEE VR Conference, Reutlingen, Germany, 18-22 March, 2018 (pre-publication version).
Can immersive virtual reality (IVR) be used to get girls interested in technology subjects and digital careers? The VR School Project offers some insights into this interesting question.
Girls and women are significantly under-represented in STEM courses and professions. In Australia, 84 per cent of those with STEM qualifications are male (Office of the Chief Scientist, 2016) and women make up only 19% of those enrolled in IT degrees (Zagami, 2016). In the USA, women hold less than 25 percent of STEM jobs (Beede et al., 2011) and make up 18% of those with a computer science degree (Vu, 2017). By age 14, girls are far less likely than boys to aspire to STEM-related careers (Archer, 2013). In lights of these statistics, it is worth asking – Can IVR be used to get girls interested in technology subjects and careers?
From phase 1 of the VR School project, we make the following observations:
Girls were much less likely to have tried IVR than boys– In our sample (22 female, 32 male), girls were almost 3 times as likely to have had NO experience of IVR compared to boys prior to the study. Boys were 3 times more like than girls to have tried IVR at least once or twice.
A minority of girls were very reluctant to try IVR – Four of the twenty two girls explicitly expressed a reluctance to try IVR, some saying it was ‘embarrassing’ to wear a head mounted display (HMD) and/or because they were worried that their classmates were looking at them. These girls requested that the door to the VR room be closed. While we could not shut the door, we did convince the girls to use the equipment which were mainly away from the view of the class. Gender theory can offer some insight into these girl’s behaviour. Constructions of emphasised femininity require girls and women to comply with certain notions of attractiveness, and, let’s face it, HMDs are not especially beautiful. Girls and women are socialised to be aware of who is looking at them, often so they can remain safe. HMDs block this awareness, making girls feel self-conscious and, perhaps, vulnerable.
Boys expressed absolute enthusiasm for IVR – That 79% of boys had experienced IVR prior to the study compared to 36% of girls, points to boys either actively seeking out or being given more opportunities to use new technology. Boys generally volunteered to try out the technology first, while most girls appeared happy to wait. A few girls volunteered to help out assisting other students with equipment and safety in the VR room, but it was mostly boys who took on this role, expressing confidence in their ability despite most being relative newcomers to IVR.
While our sample size is relatively small, these phenomena indicate a need to investigate gendered patterns of IVR technology engagement and interaction more closely. Utilizing social and psychological theories of masculinity and femininity to understand behaviour and opportunity will be important. Having a female researcher on site who demonstrated knowledge about the equipment and immersive experiences was probably helpful, particularly when girls needed encouragement or when they asked about future career opportunities. We believe that IVR does have the potential to switch girls on to technology subjects and careers. However, much more fine-grained research is required to understand and address gender dynamics in classrooms if this is to be fully realized.
Bought to you by a woman who loves VR, Associate Professor Erica Southgate