The joy of high school science through virtual reality

The VR School Study has been a two year journey in school-university collaboration. Throughout this time there have been many moments of frustration but also of an excitement that can only be sparked by collective intellectual endeavour. Among students there has also been frustration when the technology fails but these times are in contrast to what can only be be described as moments of pure learning joy.

Sadly, joy is not something that is spoken about enough in relation to schooling, and especially in regard to high school science classes. The joy of discovery is, of course, a central feature of the discipline of science, especially after the trials and tribulations of long periods of hard thought and experimentation. This quote from a lecture published in the journal Science back in 1936 captures the delight of scientific inquiry:

“While it is true that scientific men (sic) must make an impersonal study of the laws of Nature, there is ample evidence from historical records of the joy they have felt on achieving their goal. Newton, it was said, was so agitated when his work on the law of gravitation approached completion that he had to beg a friend to complete his calculation. …Harvey (the first to describe how the heart pumps blood around the body) said that ‘the pains of discovery are amply compensated by the joys of discovery.’ …The joy of the creative intellect, whether in art, literature or science, is one of the most exalted human emotions.”

How often do students experience the joy of scientific inquiry in high school science classrooms? This is a question worth asking because learning through discovery should be serious fun. How have technologies, across the ages, been instrumental in producing feelings of curiosity, wonder, excitement and that ‘exalted’ human emotion, joy? These emotions are intrinsic to the ‘creative intellect’ and they lay at the very heart of ideas in broader educational discourses about student engagement, school climate and motivation for learning.

During the VR School Study there have been moments of pure joy. As part of a unit of work in science, Year 9 students (14-15 years old) were asked to research an organ of the body, model and label it in desktop PC Minecraft Win 10 or Pocket Edition on mobile devices, and then import it into Win 10 Minecraft VR run on networked Oculus Rifts. There, they continued collaboratively building and refining the model in preparation for presenting what they had learnt about that body part to an audience.

Some examples of the pure joy of learning stand out. For instance, the first time a group of girls imported the levitating eyeball they had built in desktop computer Minecraft into Minecraft VR, there were squeals of excitement, raucous laughter, and a rapid flow of ideas about how to refine the model. They flew under and around the eyeball which was as large as a house and then into its interior via the eye’s lens. When they met inside the eye, and started lighting it up with torches, the amazement of the experience was palpable. A screenshot of the eyeball is below and the scale of it is discernible by the box on the ground which represents 1m x 1m. The square gap on the top of the eyeball was  used by the girls who would fly high and then dive into it.

floating eye from above2

A group of boys had built an eyeball with an optical nerve attached to it which the player could run through until they reached the internal part of the eye. They then began to make a rollercoaster for others to tour the eye with plans for it to extend through the optical nerve. The sheer fun of running up and through a nerve while discussing the function of it was wonderful to observe.

One group of girls had built an artery and they had labelled the various layers of the artery wall after researching the correct biological terms. As they refined their model in VR, the girls excitedly discussed how they would take peers on a tour of it, travelling through the artery ‘like a platelet in the bloodstream.’ Below is a screenshot of a side view of the artery with a pig in front of it and below this is a screenshot of a cross-sectional view of the artery with the key identifying its part.

Artery from side

Artery with legend

A group of boys took great care in building a spinal column with nerve endings, spinal fluid (or spinal juice as one fellow called it) attached to a detailed brain in cross-section. In VR, the structure was as high as a skyscraper and flying up and around it as they commentated on what work was still required was an astounding experience. They had provided, at ground level, an informative key to parts of the model. To hear students talk authoritatively and with great energy about how they went about selecting materials to try to accurately reflect the biological components of the spine, nerves and brain, while simultaneously working to improve the representation, provided a glimpse into the power of virtual reality for learning. Below is a screenshot looking up at the spinal cord with nerves and the brain; the floating white cubes are lanterns to illuminate it at night, although one boy did remark they might be thought of as electrical impulses emitting from the brain.  The feature image for this blog post is a screenshot looking down at the brain at night.

Brain looking up

While the study is not all smooth sailing, with the technological hitches demotivating some students, it has yielded insights into how collaborative inquiry using immersive VR can promote deep, authentic learning. The discovery component is twofold. Firstly there is a visceral discovery in how much more wondrous 3D models and cross-sections can look and feel in a truly immersive environment; the uniquely embodied and affective qualities of an experience that it is all around you compared with looking at or generating something on a computer screen. Secondly, there is discovery in researching and applying what is often fairly dry theoretical scientific knowledge in a process of collective creative intellect stemming from collaborative experimentation with the learning affordances of VR such as manipulation of size or unique navigation techniques (flying or diving).

The study provides a tantalizing glimpse into the (near) future of immersive education.

 

Keeping it real – A/Prof Erica Southgate (who is still recovering from flying around that skyscraper of a brain!)

 

Immersive VR: A literature review and infographic for teachers

I was recently commissioned to write a literature review on immersive virtual reality for teachers by the New South Wales Department of Education. The Department kindly distilled the literature review into an infographic to guide teacher practice

The report is: ‘Immersive virtual reality, children and school education: A literature review for teachers.’

I welcome dialogue on the literature review from teachers, researchers and developers – A/Prof Erica Southgate

An update from the VR School Study

As we move into Phase 2 of the VR School Study, the team thought that we would give you a quick video update on what we have learnt so far and what we hope to achieve over the next few months. Here is Associate Professor Erica Southgate with the low down!

And how cool is the featured picture (top). It is a student work sample from Phase 1 of the study. On the left is a bluebell that the student created in Minecraft VR and on the right is how he labelled the cross-section of the flower by drawing on his research on the different parts and functions of a plant.  He took Erica on an amazing guided tour of his creation where they both flew around the flower (like bees) while he explained the meaning of the labelled cross-section to her. It was a thoroughly researched scientific experience and great fun to boot!

A new research article from the VR School Study

This is the second article we have published from phase 1 of the VR School Study. This article reviews the literature on immersive virtual reality and children, and examines ethics and safety, technical issues, and the role of play when learning in highly immersive virtual reality.  It is co-authored with teachers from Callaghan College, Newcastle, Australia.

To cite this article in APA:

Southgate, E., Buchanan, R., Cividino, C., Saxby, S., Eather, G., Smith, S.P., Bergin, C., Kilham., Summerville, D. & Scevak, J. (2018). What teachers should know about highly immersive virtual reality: Insights from the VR School Study. Scan37(4). Retrieved https://education.nsw.gov.au/teaching-and-learning/professional-learning/scan/past-issues/vol-37/research-highly-immersive-virtual-reality

Students speak out about using immersive VR for learning

What do high school students say about using immersive virtual reality (VR) for learning? Student reflections from the VR School Project provide unique insights into the educational potential and problems of using immersive VR in real classrooms.

‘VR is really cool because different types of learners are able to effectively absorb the information they need to be taught. It’s also fun, and has a reputation for being fun.’

Fifty four students aged 13-15 years participated in phase 1 of the research. As the quote above indicates, the majority students were excited to be given the opportunity to use Minecraft with the Oculus Rift to do their science or ICT lessons. Some talked about the experience as being ‘FUN, FUN, FUN’, saying they ‘would recommend it to anyone.’

Other students thought that immersive VR had the potential to transform learning in the classroom:

‘I personally think learning with Virtual Reality will change students perspective of learning in a majorly good way as it gives the student a whole new way to learn and interact with the stuff they are learning.’

Some were more equivocal, observing that ‘Although it (VR) removes distractions, it also adds them’ and it ‘was easier to get distracted by VR (version of Minecraft) than computer (version)’. The distraction factor may be a result of the novelty of the experience, however it is worth investigating further how the intensity of the experience — the sense of presence and freedom of agency (autonomy of navigation, manipulation and creativity) which Minecraft VR allows — may interfere with on-task behaviour.

A few students also mentioned cybersickness as a ‘negative’:

‘Our virtual reality tasks are entertaining and more engaging than any other normal science class, although while engaging in this task I have motion sickness which causes me to finish earlier than I normally would. There aren’t really any downsides apart from motion sickness.’

The student perspective from Phase 1 of the VR School project has yielded several ‘leads’ to be explored during phase 2 of the study which will be conducted in the first half of 2018. Harnessing student enthusiasm for immersive VR for increased on-task learning is vital if the technology is to enhance education.

Furthermore, as part of the project we screened for potential susceptibility to cybersickness and educated students about the condition, actively checking on their well-being while they were in VR. Students themselves exhibited good awareness of cybersickness and appeared to monitor how they were feeling during the VR experience, with most opting to get out at the first signs of discomfort. While there were a very few cases of cybersickness witnessed by the team, we will more closely examine the phenomenon from the student perspective during phase 2 of the project.

 

Associate Professor Erica Southgate on behalf of the awesomeness which is VR School team.

 

Photo: m.i.m.i ‘Shout!’ https://flic.kr/p/aCcip5

Metacognition and/in virtual reality: Some observations

Educators have become increasingly interested in the idea of metacognition. Metacognition is often simply defined as ‘thinking about thinking’ but to understand its implications for learning we need to look closely at a specific set of thinking processes and behaviours.

These include: how a learner plans how they will go about a task and the goals they set in relation to it; how they assess their understanding of what they’ve learnt; and how they go about evaluating their performance for future improvement.

Metacognitive processes are part of self-regulated learning. This is where learner takes control of their own learning. Self-regulated learners have a deeper understanding of content knowledge, the ability to transfer knowledge and skills, and more powerful higher order thinking strategies for problem solving, logical thought and critical thinking.

In research, there are a number of methods used to identify metacognition in learners including questionnaires, interviews and ‘think-aloud’ protocols. Observational methods can also be used and this is a key component of the VR School Project.

In our project we are collecting information through audio and video recordings of student learning in the VR room at the high schools and by using screen capture to record what is happening in the virtual environment. We then triangulate this (or look at each source of information systematically in relation to the other) and code it for metacognitive and self-regulated behaviours, and pedagogical and collaborative interaction. This is supplemented by post VR experience interviews with students and teachers. One benefit of systematic observation is that it pays attention to both verbal and non-verbal action and this is ideal for exploring metacognition and self regulation in the natural setting of the school.

Observations from the VR School Project indicate the social nature of learning in the virtual environment and the VR room. We have observed five way conversations/interactions across these two realities. These are:

  1. Self-talk as students verbalise their experience in real time.
  2. Talking to the game’s non-player character (robot, horse).
  3. Dialogue with student teammates who are in the same virtual environment and working cooperatively on the learning task.
  4. Conversations between students in VR and classmates who are watching on about the VR experience and the learning task.
  5. Dialogue between the student in VR with the teacher or researcher about the experience and seeking feedback on learning task.

The permeable, social nature of cognition and learning in VR illuminates three types of metacognitive regulation: (1) Self-regulation where students regulate their own behaviours through self-talk and talk to non-player characters; (2) Other-regulation where students working together in VR steer each other back (through talk or action) to aspects of the learning task or to features of the game; and, (3) Shared-regulation where students in VR have conversations with others, both in the virtual environment and outside of it, to process the VR experience, learn new skills  and to progress the task through co-operative learning.

Understanding how virtual reality might be used to develop and enhance metacognitive skills and self-regulation is important if we are to advance beyond a ‘digital toys for classroom’ approach when introducing new technologies into schools.

 

This post bought to you by Associate Professor Erica Southgate and Dr Jill Scevak – We love learning!

Blog at WordPress.com.

Up ↑