New study on 360° VR for primary school language learning

The VR School Study is in a new partnership with Athelstone School, a South Australian primary (elementary) school. The Athelstone School research will investigate how 360° VR content creation can be used for learning Italian. Funded by the South Australian Department of Education’s Innovative Language Program Grants (ILPG) program, Year 5 and 6 students will use the VRTY platform to create and share their own virtual worlds guided by the Australian curriculum. This action research has already undergone a pilot phase that happened in the second half of 2019 and we are now entering into the first of  several research cycles in order to explore technical challenges, developmental appropriateness of 360° VR, and the efficacy and innovative potential of 360° VR content creation for learning another language.

The teacher co-researchers on the project are language teachers Angelica Cardone (far left behind) and Jo Romeo (left front on top image), and Principal Gyllian Godfrey (back centre) who is also a qualified language teacher.  Gyllian provided this reflection on the project:

“The ILPG has offered the opportunity to test the benefits of VR for students
learning languages at primary level and has also upped-the-ante by making
students the creators of their own content, by developing non-linear language
learning narratives for themselves and their peers.”

In our next blog, the folks from VRTY explain how students can use their platform for content creation and learning.  Stay tuned.

 

Bought to you by A/Prof Erica Southgate who is taking up a lot of room (right front) in the photo above.

Some cool stuff from the VR Book

This article was first published by the Australian Association for Research in Education (29 June, 2020). I’m sharing it here because it highlights some interesting findings from the book.

Virtual Reality in school education: Australia leads the way with groundbreaking research

By Erica Southgate

In 2016, I attended a meeting and fortuitously sat next to the (now retired) principal of Callaghan College who asked me what type of research I’d like to do in schools. At the time a new high-end, highly immersive type of virtual reality (VR) hardware called the Oculus Rift had been released. This type of VR equipment was costly and needed an expensive computer to run but offered entry into amazing worlds. It provided high fidelity environments to be explored through gestural interaction via controllers that allowed you to use your virtual hands to interact with virtual objects and avatars (either other people or computer characters) and navigate in ways that felt incredibly embodied (I am addicted to flying and jumping off clouds in VR).

 I made a gentle pitch that I’d like to work with teachers to embed this technology into classrooms to see how it could be used for learning but that I had no idea what we might find. And so began the VR School Study, a collaboration with Callaghan College and later, Dungog High School, both government high schools in NSW, Australia.  It became the first research internationally to embed high-end VR in school classrooms.

VR School Study

The VR School Study is ongoing participatory research that aims to explore the use of immersive virtual reality in real classrooms. We focus on how VR can be used to enhance learning, its relationship to curriculum, and its implications for pedagogy. And we examine all the practical, ethical and safety issues that come with integrating emerging technology in classrooms. At the end 2018, the study reached a major milestone with the completion of two major case studies into the use of the technology in secondary schools.

An ‘arduous’ adventure in emerging technology

IN 2018, on the last day of research at Callaghan College, I interviewed two teachers about what it was like to embed an emerging technology in the classroom. The response was, ‘Arduous comes to mind.’ While we did have a laugh, the comment summed up a range of issues encountered during the research.

Space to accommodate VR and safety concerns

Trying to find an available classroom space large enough to accommodate the play areas needed for this VR, which is best used standing and moving around, proved difficult. On one campus we managed to get a room with a small storeroom off it that squeezed in three sets of VR equipment with play areas while at the other we had a larger former lab-preparation room attached to a classroom. Both VR rooms were beyond the immediate supervisory gaze of the teacher and so required me or a student to act as a safety ‘spotter’ to ensure there were no collisions with walls, furniture or peers. Even though there is a built in ‘Guardian System’ (a pop-up virtual cage mapped to the real environment you should stay within), some students became so immersed that they ignored it and needed intervention. Even now with ‘pass through’ cameras in some VR headsets (these allow the user to see the outside environment when they go beyond the Guardian System) some people become so immersed and are interacting with such speed that they can run into objects. Engineered safety solutions are not always enough to maintain safety.

Network and server issues

Getting the tech to work within the confines of the school internet network proved difficult. Game stores that allow multiplayer environments were blocked and internet work-arounds required. Teachers had to set-up individual student accounts which was time-consuming and often update applications in their own time. Our screen capture video, which showed a first-person view of what the student was seeing and doing in a virtual environment, indicated that the technology failed 15% of the time due to network, server and VR tracking drop-out. One of my favourite moments in student humour and resilience was when I heard one boy say to another as they who were fixing a server issue for the third time, “Aren’t you glad you signed up for this?”.

Content mastery and creativity through collaboration

Students were given the highest quality VR and ‘sandbox’ applications, such as Minecraft VR and Tilt Brush which allowed them to create in virtual environments without needing to code. Combined with clever curriculum design they undertook self-directed formative assessment tasks.

In Year 9 science this involved groups researching and developing a model of a body organ in Minecraft VR. The results were an astounding mix of scientific knowledge melded with creative endeavour developed through group problem-solving and collaboration inside and outside of VR.

Brain from up high

One group produced an anatomically correct, labelled eyeball which was toured by via a rollercoaster while another built a skyscraper of a brain sitting atop a spinal cord which you flew up to interact with engineered components representing neurons. While in VR, students narrated from memory the parts and function of the brain. Analysis of the screen capture video using a framework adapted from  work by Assistant Professor in Learning and Learning Processes the University of Oulu, Jonna Malmberg, indicated that the majority of students used the creative properties of VR to engage in highly collaborative science learning.

Inside the brain

At Dungog High School a senior drama class used single-player 3-D sculpting program Tilt Brush, as an infinite virtual design studio to explore symbolism in set design at real life scale and beyond. Students worked in groups to quickly prototype symbolic elements of their directorial vision with peers and the teacher moving in and out of VR to offer feedback. Mistakes were erased or changes made at the press of a button. The virtual studio of Tilt Brush melded with the drama studio to offer students an opportunity to view their design in 3D from the perspective of an audience member, director, designer or actor. All they needed to do was teleport round the virtual environment to do this.

Let’s leave behind the EdTech evangelism

An admission – I’m not a fan of the type of innovation discourse which permeates university managerial-speak and is associated with EdTech (educational technology) evangelism. This type of talk conjures up images of momentous leaps in ways of doing and knowing with the trope of the lone (male, yes it is a gendered) genius leading the charge with their vision of the future.

Innovation is incorrectly depicted as a development shortcut detached from contexts and the years of work that yield incremental improvements and insights, as Stanford University Director, Christian Seelos, and colleague Johanna Mair, argue. They warn against evaluating innovation only on positive outcomes as this can stifle experimentation required to progress an initiative in difficult or unpredictable environments.

This aligns with critical studies in EdTech where research is on the ‘state-of-the-actual’ rather than the ‘state-of-the-art’, as Distinguished Research Professor in the Faculty of Education, Monash University, Neil Selwyn reminds us. It entails moving away from trying to ‘prove’ a technology works for learning to scrutinizing what actually takes place especially in contexts that are not the ‘model’ well-resourced schools where technologies are often tested.

Teleporting away for now

As I have argued elsewhere, to get the best ethical and educational outcomes with emerging technologies we must carefully incubate these in schools (and not just resource-rich ones) in collaboration with willing teachers so that we can document incremental ‘innovation’ through ‘state-of-the-actual’ reporting. This can be an arduous project but one full of authentic and valuable insights for those willing to go on a research and pedagogical adventure. It’s this type of evidence, not EdTech evangelism, that we need.

For those who want more. In May 2020, I published findings from the study in Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (Routledge). As co-researchers, teachers from Callaghan College and Dungog High School contributed to their respective chapters in this book. The book offers new pedagogical frameworks for understanding how to best use the properties of VR for deeper learning as well as a ‘state-of-the-actual’ account of the ethical, practical and technical aspects of using VR in low-income school communities.

Erica Southgate (PhD) is Associate Professor of Emerging Technologies for Education at the University of Newcastle, Australia. She is lead author of the recent Australian Government commissioned report, Artificial intelligence and emerging technologies (virtual, augmented and mixed reality) in schools research report, and a maker of computer games for literacy learning. Erica is always looking for brave teachers to collaborate with on research and can be contacted at Erica.southgate@newcastle.edu.au. Erica is on Twitter@EricaSouthgate

This article was originally published on EduResearch Matters. Read the original article.AARE

NEW book from the VR School Study

Out of three years of co-research with teachers comes the first book (of many I hope) from the VR School Study. The book, Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (2020 Routledge) provides a brand new pedagogical framework with scaffolds for educators on how to use the technology for deeper learning. Case studies from Callaghan College and Dungog High School are included with a focus on metacognition, collaboration and creativity.

Blog SS

Immerse + Imagine with Michelle Brown

Could you tell me about your professional background Michelle?

I studied Multimedia in the early 2000s and began to incorporate technology into my arts practice, I did a lot of computer design work for musicians, bands and venues back then. About this time I also started working and playing in the music industry. I ended up managing one of Australia’s iconic community radio stations, 4ZZZ in Brisbane, so I didn’t have much time to spend on my art, but I did manage to keep producing work occasionally! Being connected to an industry like music gave me a great bunch of opportunities but I decided to leave 4ZZZ in 2016 to concentrate on a career creating art and producing content.

When did you first get interested in VR and why?

In 2016 while I was finishing up my management role I saw some really cool stuff being created with augmented and virtual reality. I started to look into what I needed to get a VR set up and also started producing AR artwork, I already had the animation and illustration skills plus the tech knowledge so it all just kind of fell into place! The biggest barrier for VR is the expense of the equipment however things are getting cheaper with stand-alone headsets like the Quest available, at the time I had to invest in a PC (I was strictly a mac user for a long time!) and a HTC Vive. Some of the artists I saw producing VR artwork include Liz Edwards, a very cool 3D artist, which got me into a VR art app called Tilt Brush, which I’ve used ever since in my workflow, from music videos to large scale installation work.

How do you currently use VR?

I mainly work with some of the VR art apps/programs like Google’s Tilt Brush, Gravity Sketch and some of the animation programs like Tvori. I paint and create environments and worlds in VR that are the base for music videos, installation work and more. Just like a 3D modelling program, many of the VR apps allow you to export 3D creations that can be used in other apps, like Unity, or traditional film editing software like Premiere Pro.

I also teach workshops in using VR and AR in arts practice, so showing ways that you can integrate illustration and animation with mobile apps and teaching people about the art apps I’ve mentioned.

What are your thoughts on VR and the creative process?

For me I love it, it really cuts down on the amount of time I spend hand illustrating or animating. The same with 3D modelling, it would take me possibly 3 times the amount of time to create something in Cinema4D that I can model quickly in VR as it’s more attune to actual sculpting/painting.

I also feel that VR can create more of an impactful experience, when you are in a headset it’s easy to ignore everything else going on and just concentrate on the narrative or user experience, no social media distractions!

What advice would you give teachers and students who are thinking about using VR for creative projects?

Allow a bit of time for all students to have a play in VR, even if you only have one or two headsets! If you are showing students how to use some of the art programs like Tilt Brush, you need to let them have a little time to get comfortable and creative. But also keep in mind taking breaks if you’re in the headset for more than 30 minutes at a time. I also would recommend giving some direction so that students experimenting with VR art have something to focus on rather than just aimlessly painting swirls, for example; get them to paint a favourite animal or cartoon.

What is unique about creating in VR instead of some other medium?

It’s mainly the speed of which I can get an idea out plus the fact it’s in a three dimensional space, it’s just so much quicker for me to produce a visual story. It’s also a way that I can communicate a theme or an idea that links to a social issue that I can address with my installation work, as it allows for more intimacy and less distraction. Being immersed in a 3D environment by yourself in the headset provides a great opportunity to just focus.

Check out Michelle’s VR art and more on her website https://www.thebadlament.com/

MB

An educator’s advice on what to look for in a 360° platform

360° content creation platforms are gaining popularity in schools as a way for students to create their own virtual environments and narratives (linear and branching) to demonstrate mastery of learning objectives.

Professionally, I think that students should be creating and sharing this content and not teachers (we should be worrying less about whether students can make a ‘perfect’ product and more concerned about the many technical, thinking and social skills they are learning as the create and share virtual environments, especially if they do this collaboratively.

360° content creation is certainly developmentally appropriate for primary school children and can be great fun for primary and secondary school students. Students can import scenes and annotate them or, better still, create their own 360° photo or video scenes to use as the basis for learning task. Here are some of things I look for as an educator in a 360° platform:

  1. Intuitive no-code mainly ‘drag and drop’ or easy content creation tools with good tutorial and online/real-time support.
  2. The ability to put in your own 360° video or photo foundation environments which can house media-rich content that students can create (video, photo, text, animation/gif) and that can link though hot spots or portals to create linear or branching way (joining environments with different media).
  3. Options for sharing and publishing 360 creations from private class to public viewing.
  4. Clear intellectual property and privacy policies including consideration of biometric* data harvesting – demonstrated knowledge of privacy legislation is required.
  5. Accessible analytics which make sense for learning at content creation and viewing/interaction phases.
  6. Preferably linked or supported by a teacher professional learning community who can share creations, pedagogical experiences and curriculum material.
  7. Easy to manage school and student account arrangements.
  8. Simple to understand advice on and ways to manage network compatibility and bandwidth implications for your school (and if it is a streaming platform, if your school network can accommodate this).

*Biometrics can be defined as the automated recognition and collection of measurable data on biological and behavioural characteristics of individuals. Behavioural data includes vocal patterns, eye tracking/gaze attention, gait tracking or typing recognition.  For more information on biometrics and other legal and ethical issues related to VR and AR technologies see this report for educators.

– This post bought to you by A/Prof Erica Southgate.

Feature image: Screenshot from https://www.360cities.net/search/@tags-aerial

New report & infographics on immersive learning

A/Prof Erica Southgate was commissioned by the Australian Government to produce research on emerging technologies for schools including current state-of-evidence, and pedagogical,practical and ethical advice. The project produced the Artificial Intelligence and Emerging Technologies  (virtual, augmented and mixed reality) in Schools Research Report, a short read version of the report written for teachers and infographic posters for students. You can find these here:

Full report – Artificial Intelligence and Emerging Technologies in Schools Research Report 

Short Read on Virtual Reality and Augmented Reality in Schools

VR and AR infographics for students

 

Virtual Reality for Deeper Learning

How can we expand our understanding of learning in/through virtual reality in ways that move beyond training scenarios or simple ‘facts and figures’ knowledge acquisition?

In our latest paper we take a deep dive into how VR can help students develop elusive 21st century thinking skills. We apply the Deeper Learning framework and the Revised Bloom’s Taxonomy (featured image above) to explore student collaborative and higher order thinking.

 

Q & A on teaching drama through VR

In our previous post we introduced a project at Dungog High School where they are using the 3D drawing program Tilt Brush in drama class. In this post, Head Teacher Louise Rowley responds to 4 key questions on her learning journey and how to use VR in drama in a curriculum-aligned way.

What is the VR project about?

The Year 11 students were creating a Director’s Folio for a contemporary Australian play called Ruby Moon. They traditionally have to create a director’s vision and explore this in their set box and costume designs. [Syllabus outcome P1.4: understands, manages and manipulates theatrical elements and elements of production, using them perceptively and creatively.] For this project, we included the VR and the program Tilt Brush for them to explore and create an audience experience of their Director’s vision. This really led to more engagement with the atmosphere and audience experience. [Drama Stage 6 Syllabus outcome P2.1: understands the dynamics of actor-audience relationship.]

They were working in groups to create their designs and needed to understand, manage and manipulate theatrical elements and elements of production. They were charged with the task of using them perceptively and creatively and this was taken to a new level of creativity in the VR space. We had been inspired by the National Theatre in the UK who created an immersive experience for their audience based on their director’s vision. This takes the audience to a completely new place and extended the idea of theatre as an immersive art form. [Syllabus outcome P1.4: understands, manages and manipulates theatrical elements and elements of production, using them perceptively and creatively.] The process of taking their Director’s vision into the VR space allowed them to think more about the audience’s experience and really immerse themselves in the director’s role. It allowed them to demonstrate their directorial vision in the immersive virtual world as well as in the physical world. [Syllabus outcomes P2.2: understands the contributions to a production of the playwright, director, dramaturg, designers, front-of-house staff, technical staff and producers; P2.3: demonstrates directorial and acting skills to communicate meaning through dramatic action.]

The project also aligns with key competencies in Drama with students collecting, analysing, organising information, and communicating ideas and information in new and creative ways their Director’s folio and in the VR space. Students were also planning and organising activities and working with others and in teams. The level of collaboration, which developed throughout the project, was a key achievement. Students were discussing ideas like Directors and helping each other to master the new software. They had no experience with the technology before they started and were able to unleash their creativity and I saw students who were less confident really growing in their confidence and ability to take a role in the group.

Using the VR deeply engaged the students in their learning. The project involved enquiry, research, analysis, experimentation and reflection contributing to the development of the key competency solving problems. Students had the opportunity to develop the key competency using technology in the study of new approaches to Drama and Theatre and dramatic forms. VR is a completely new technology and we are already exploring more ideas on how to link more programs together within the Tilt Brush software.

Why use this technology?

In the design process there is a lot of experimentation and collaboration required. Tilt brush has endless features that allow this to occur. Sketches could be saved, videoed, gifs made and photographed, and this process of documenting their ideas helped the students reflect on their ideas more. The quality of their ideas developed further. The Tilt Brush program was an endless space, which incorporated many amazing creative features. Designs could be instantly erased and then re-created quickly. It was not messy and did not waste materials. It had many resources that we do not usually have in the Drama room. Endless colours and brushes, backgrounds, models to be imported and guides to draw around. Sketches could be made smaller or bigger in an instant. It allowed all students to be equal. Once in the technology they were able to each contribute in a very really and tangible way to the group idea. It also allowed our rural students to have access to quality programs, which can sometimes not be available to them because of location.

Student 2

What is the biggest learning curve?

We had to learn how to use the technology and how to program the classwork to make sure other tasks were being completed at the same time. This was fairly painless and the students were great. As the teacher, I had to take a risk with new technology and not be frightened of not knowing absolutely everything about the software. After a while, the students were teaching each other and me.

What advice would you give to teachers?

Just do it! It isn’t scary and you don’t have to know everything. I have given advice to others in my school about trying new technology. There is so much to learn is can be quite overwhelming but is can be a lot of fun. I am now helping other teachers try a few new technologies. So the effect has been good.

 

Feature Image: Head Teacher Louise Rowley experimenting in Tilt Brush

Picture in text: Students discussing virtual set design features.

Weaving VR through the science curriculum

In schools, it is vital to align the use of technology to the curriculum. We believe it is important to weave VR through student learning in carefully planned and scaffolded ways. This approach makes VR a powerful learning tool rather than a toy. 

In the VR School Research Study, teachers designed a unit of work on body systems related to the NSW Science (biology) syllabus. Within the unit of work, students continued to experience tradition lab-based science learning and explicit teaching. The teachers developed a formative VR assessment task (described below) that carefully scaffolded independent group learning through collaborative research and creativity.

Students had to carefully organise their group effort as they had limited time to complete the task in VR. The unit of work was conducted over about a 6-week period with around 9 of the 22 in-class learning hours designated for VR (we also experienced technical problems which cut into the VR time and some of this time was spent familiarising students with highly immersive experiences and the equipment). We had limited hardware (3 x networked Oculus Rifts with Alienware laptops on each campus) and did not schedule VR time during the last lesson of the day in case a student became cybersick and would be unable to travel home. At most, 4 groups of 3 students could cycle through VR during each 1 hour lesson.

This meant that students had to be very organised with their research and plan and  construct their prototype models outside of VR so that they could import, collectively evaluate and rework the model during their scheduled VR time. This entailed self-regulated learning.

Here is a video example of an internal tour of a human heart – researched, prototyped and annotated in Minecraft by three Year 9 girls. The detailed annotations and fun facts, correct internal structure with an accurate flow of ‘blood’ through the organ, made it an impressive example of deep learning using VR technology. It was an amazing tour experience, even if it was a bit claustrophobic at first! At the end of the video you can see the heart’s external scale as one of the girl’s avatars flies around it.

The formative assessment task given to students is outlined, in full, below:

Overview of the Living World VR task  

In groups of three students, create a diorama (3D representation) using Minecraft of some part (organ or organ system) of the human body that is responsible for sensing and responding to the environment (internal or external).

This will represent a substantial body of work that thoroughly demonstrates your group’s understanding of the structure and function of the selected organ or organ system. It should aim to both inform and engage other Year 9 students and your teacher.

The final audience will be another group of students, and will be experienced in VR (virtual reality) – Oculus Rift. The look and feel of the presentation will be very different when experienced in VR, compared to playing on a console, tablet or PC/laptop. Groups will be required to do some planning and evaluation of their own diorama in VR before the final audience experiences it, so that it is optimised for VR viewing (immerses the audience).

A 3-minute commentated video will also be created by each group.

Instructions

  1. Form groups of three. Allocate roles for each of the group members. Responsibilities may include research, server hosting, building, annotating (placing signs on parts, labelling structures or functions), team leading, VR video commentating, artistic directing and redstone circuit designing. NOTE: Each team member may have multiple responsibilities and could also share responsibilities.
  2. Choose an organ system (e.g. nervous system, endocrine system) or a smaller part of an organ system (such as an organ or group of organs and tissues).
  3. Research the subject of your group’s diorama thoroughly. Decide which aspects of the research will be included in your diorama.
  4. Create a Minecraft world that will be the server for your group’s project. This should be done in Minecraft Windows 10 Edition or Minecraft Pocket Edition (These are the only versions that will be able to network with the version used by Oculus Rift). Ensure that the version used by your group is the same as the version used by Oculus Rift for VR. Other group members join the world in Multiplayer mode.
  5. Build a diorama. Ensure all structures are labelled and all functions explained (signs would be useful for this purpose). Consider presentation concepts such as linear (visitors must follow a path) and freeform (visitors can go anywhere, maybe even fly). Be innovative and creative. Create new or unexpected features.
  6. VR testing. Each group will have 4 VR sessions, lasting about 15 minutes each:

Session 1 – Become familiar with Minecraft in Oculus Rift. No building. Learn to use the touch controls and get around. Learn how to build.

Session 2 – Test diorama in VR. Evaluate whether it is fit for the intended audience. Decide what will be edited before the next VR session.

Session 3 – Record 3-minute commentated video of diorama. Press ‘Windows Button’ + ‘G’ in game to start recording.

Session 4 – Observe another group’s diorama. Provide warm/cool feedback.

Blog at WordPress.com.

Up ↑