Virtual Reality for Deeper Learning

How can we expand our understanding of learning in/through virtual reality in ways that move beyond training scenarios or simple ‘facts and figures’ knowledge acquisition?

In our latest paper we take a deep dive into how VR can help students develop elusive 21st century thinking skills. We apply the Deeper Learning framework and the Revised Bloom’s Taxonomy (featured image above) to explore student collaborative and higher order thinking.


Weaving VR through the science curriculum

In schools, it is vital to align the use of technology to the curriculum. We believe it is important to weave VR through student learning in carefully planned and scaffolded ways. This approach makes VR a powerful learning tool rather than a toy. 

In the VR School Research Study, teachers designed a unit of work on body systems related to the NSW Science (biology) syllabus. Within the unit of work, students continued to experience tradition lab-based science learning and explicit teaching. The teachers developed a formative VR assessment task (described below) that carefully scaffolded independent group learning through collaborative research and creativity.

Students had to carefully organise their group effort as they had limited time to complete the task in VR. The unit of work was conducted over about a 6-week period with around 9 of the 22 in-class learning hours designated for VR (we also experienced technical problems which cut into the VR time and some of this time was spent familiarising students with highly immersive experiences and the equipment). We had limited hardware (3 x networked Oculus Rifts with Alienware laptops on each campus) and did not schedule VR time during the last lesson of the day in case a student became cybersick and would be unable to travel home. At most, 4 groups of 3 students could cycle through VR during each 1 hour lesson.

This meant that students had to be very organised with their research and plan and  construct their prototype models outside of VR so that they could import, collectively evaluate and rework the model during their scheduled VR time. This entailed self-regulated learning.

Here is a video example of an internal tour of a human heart – researched, prototyped and annotated in Minecraft by three Year 9 girls. The detailed annotations and fun facts, correct internal structure with an accurate flow of ‘blood’ through the organ, made it an impressive example of deep learning using VR technology. It was an amazing tour experience, even if it was a bit claustrophobic at first! At the end of the video you can see the heart’s external scale as one of the girl’s avatars flies around it.

The formative assessment task given to students is outlined, in full, below:

Overview of the Living World VR task  

In groups of three students, create a diorama (3D representation) using Minecraft of some part (organ or organ system) of the human body that is responsible for sensing and responding to the environment (internal or external).

This will represent a substantial body of work that thoroughly demonstrates your group’s understanding of the structure and function of the selected organ or organ system. It should aim to both inform and engage other Year 9 students and your teacher.

The final audience will be another group of students, and will be experienced in VR (virtual reality) – Oculus Rift. The look and feel of the presentation will be very different when experienced in VR, compared to playing on a console, tablet or PC/laptop. Groups will be required to do some planning and evaluation of their own diorama in VR before the final audience experiences it, so that it is optimised for VR viewing (immerses the audience).

A 3-minute commentated video will also be created by each group.


  1. Form groups of three. Allocate roles for each of the group members. Responsibilities may include research, server hosting, building, annotating (placing signs on parts, labelling structures or functions), team leading, VR video commentating, artistic directing and redstone circuit designing. NOTE: Each team member may have multiple responsibilities and could also share responsibilities.
  2. Choose an organ system (e.g. nervous system, endocrine system) or a smaller part of an organ system (such as an organ or group of organs and tissues).
  3. Research the subject of your group’s diorama thoroughly. Decide which aspects of the research will be included in your diorama.
  4. Create a Minecraft world that will be the server for your group’s project. This should be done in Minecraft Windows 10 Edition or Minecraft Pocket Edition (These are the only versions that will be able to network with the version used by Oculus Rift). Ensure that the version used by your group is the same as the version used by Oculus Rift for VR. Other group members join the world in Multiplayer mode.
  5. Build a diorama. Ensure all structures are labelled and all functions explained (signs would be useful for this purpose). Consider presentation concepts such as linear (visitors must follow a path) and freeform (visitors can go anywhere, maybe even fly). Be innovative and creative. Create new or unexpected features.
  6. VR testing. Each group will have 4 VR sessions, lasting about 15 minutes each:

Session 1 – Become familiar with Minecraft in Oculus Rift. No building. Learn to use the touch controls and get around. Learn how to build.

Session 2 – Test diorama in VR. Evaluate whether it is fit for the intended audience. Decide what will be edited before the next VR session.

Session 3 – Record 3-minute commentated video of diorama. Press ‘Windows Button’ + ‘G’ in game to start recording.

Session 4 – Observe another group’s diorama. Provide warm/cool feedback.

Immersive VR: A literature review and infographic for teachers

I was recently commissioned to write a literature review on immersive virtual reality for teachers by the New South Wales Department of Education. The Department kindly distilled the literature review into an infographic to guide teacher practice

The report is: ‘Immersive virtual reality, children and school education: A literature review for teachers.’

I welcome dialogue on the literature review from teachers, researchers and developers – A/Prof Erica Southgate

An update from the VR School Study

As we move into Phase 2 of the VR School Study, the team thought that we would give you a quick video update on what we have learnt so far and what we hope to achieve over the next few months. Here is Associate Professor Erica Southgate with the low down!

And how cool is the featured picture (top). It is a student work sample from Phase 1 of the study. On the left is a bluebell that the student created in Minecraft VR and on the right is how he labelled the cross-section of the flower by drawing on his research on the different parts and functions of a plant.  He took Erica on an amazing guided tour of his creation where they both flew around the flower (like bees) while he explained the meaning of the labelled cross-section to her. It was a thoroughly researched scientific experience and great fun to boot!

A new research article from the VR School Study

This is the second article we have published from phase 1 of the VR School Study. This article reviews the literature on immersive virtual reality and children, and examines ethics and safety, technical issues, and the role of play when learning in highly immersive virtual reality.  It is co-authored with teachers from Callaghan College, Newcastle, Australia.

To cite this article in APA:

Southgate, E., Buchanan, R., Cividino, C., Saxby, S., Eather, G., Smith, S.P., Bergin, C., Kilham., Summerville, D. & Scevak, J. (2018). What teachers should know about highly immersive virtual reality: Insights from the VR School Study. Scan37(4). Retrieved

Implementing immersive VR safely in classrooms: A paper from the VR School Study

This paper reflects on the ethical and safety implications of implementing highly immersive virtual reality in junior high school classrooms from data collected during phase 1 of the VR School Study.

It should be referenced (APA 6th):

Southgate, E., Smith, S.P., Eather, G., Saxby, S., Cividino, C., Bergin, C., … Scevak, J. (2018). Ethical conduct and student safety in immersive virtual reality: Protocols and resources from the VR School Research Project.  IEEE VR Third Workshop on K-12+ Embodied Learning through Virtual & Augmented Reality (KELVAR) which is a part of the IEEE VR Conference, Reutlingen, Germany, 18-22 March, 2018 (pre-publication version).

The spiders are coming! VR guardian systems are not always enough

Fully immersive VR is a truly embodied experience. You move and interact with virtual objects and characters and, if the virtual environment is networked, with other players. It’s not like watching a movie, it’s like being in it and you can make things happen. This feeling of ‘being there’ in the virtual world is called presence or, when you are with others, social presence.

Immersive VR systems (Oculus Rift or HTC Vive) are designed so that the user is ‘protected’ or ‘contained’ by a virtual Guardian or Chaperone system. These systems consist of a 3D grid cage which pops up when the user strays beyond the safe, object free area that they have set up when configuring the equipment (see the screenshot below for Oculus Rift). Guardian systems temporarily break the sense of immersive presence by providing a visual cue that the user needs to move back into the safe zone.

Guardian system pic for blog

During phase 1 of the VR School Project, we observed that students moved in very different ways especially in Minecraft VR where there is a great deal of autonomy in the open world game.

Some students moved very little, favoring small hand gestures and head movements and minor body rotations. Others rotated a lot but within a fairly restricted footprint but moved their heads, hands and arms more freely. There were also students who were very kinetic; they danced, boxed, galloped on the spot on virtual horses, waved their arms around, crouched down, kicked and repeatedly rotated, often getting the tether (which attaches the headset to the laptop) wrapped around their bodies.

All students in VR needed supervision, even the less active movers. In the VR School project, either the researcher or another students acted as a ‘spotter’. The spotter’s role was to make sure that the students in VR did not collide with objects or student spectators. This role was necessary because the engineered solution to safety, in this case the Guardian system, was sometimes ‘ignored’ by students. I have put the word ‘ignored’ in quote marks because it did not appear that students consciously put themselves at risk of bumping into objects. Rather, some students appeared to be so immersed that they automatically continued their actions outside of the safe area and seemed surprised when the spotter told them they were too close to objects and needed reorientation.

Furthermore, it appeared that the intensity of immersive VR could occasionally trigger a flight or fright response. For example, on one occasion when using the survival mode of Minecraft VR, a student was violently startled when spiders began to approach her. She began to crab-walk sideways at speed and the researcher had to speak loudly to her and place a hand on her shoulder to stop her running off.

There is certainly much more research that needs to be done on the adequacy of Guardian systems in breaking intense feelings of presence in VR, especially for those who are new to the experience but also in relation to startle responses. Some research suggests that young people can become so immersed in virtual and augmented reality environments that they enact unsafe behaviour due to a lack of awareness.

In most cases the Guardian system combined with the physical sensation of being tethered broke the feeling of presence enough so that student regulated their own safety in VR. The current version of the Oculus Rift is tethered, however the new Oculus Go is not. There are certainly safety issue to be explored with untethered design and practical and duty of care issues regarding the need for constant supervision of students who are in immersive VR. Much more public discussion regarding these issues is required.


Associate Professor Erica Southgate

Metacognition and/in virtual reality: Some observations

Educators have become increasingly interested in the idea of metacognition. Metacognition is often simply defined as ‘thinking about thinking’ but to understand its implications for learning we need to look closely at a specific set of thinking processes and behaviours.

These include: how a learner plans how they will go about a task and the goals they set in relation to it; how they assess their understanding of what they’ve learnt; and how they go about evaluating their performance for future improvement.

Metacognitive processes are part of self-regulated learning. This is where learner takes control of their own learning. Self-regulated learners have a deeper understanding of content knowledge, the ability to transfer knowledge and skills, and more powerful higher order thinking strategies for problem solving, logical thought and critical thinking.

In research, there are a number of methods used to identify metacognition in learners including questionnaires, interviews and ‘think-aloud’ protocols. Observational methods can also be used and this is a key component of the VR School Project.

In our project we are collecting information through audio and video recordings of student learning in the VR room at the high schools and by using screen capture to record what is happening in the virtual environment. We then triangulate this (or look at each source of information systematically in relation to the other) and code it for metacognitive and self-regulated behaviours, and pedagogical and collaborative interaction. This is supplemented by post VR experience interviews with students and teachers. One benefit of systematic observation is that it pays attention to both verbal and non-verbal action and this is ideal for exploring metacognition and self regulation in the natural setting of the school.

Observations from the VR School Project indicate the social nature of learning in the virtual environment and the VR room. We have observed five way conversations/interactions across these two realities. These are:

  1. Self-talk as students verbalise their experience in real time.
  2. Talking to the game’s non-player character (robot, horse).
  3. Dialogue with student teammates who are in the same virtual environment and working cooperatively on the learning task.
  4. Conversations between students in VR and classmates who are watching on about the VR experience and the learning task.
  5. Dialogue between the student in VR with the teacher or researcher about the experience and seeking feedback on learning task.

The permeable, social nature of cognition and learning in VR illuminates three types of metacognitive regulation: (1) Self-regulation where students regulate their own behaviours through self-talk and talk to non-player characters; (2) Other-regulation where students working together in VR steer each other back (through talk or action) to aspects of the learning task or to features of the game; and, (3) Shared-regulation where students in VR have conversations with others, both in the virtual environment and outside of it, to process the VR experience, learn new skills  and to progress the task through co-operative learning.

Understanding how virtual reality might be used to develop and enhance metacognitive skills and self-regulation is important if we are to advance beyond a ‘digital toys for classroom’ approach when introducing new technologies into schools.


This post bought to you by Associate Professor Erica Southgate and Dr Jill Scevak – We love learning!

Blog at

Up ↑