Southern Montessori School joins the VR School Study

Southern Montessori Middle School is excited to launch our VR project. Southern Montessori’s VR project is part of an integrated Humanities and Science unit based on the inquiry question: ‘How can we secure food for our future?’ Students will be using VR to create their own biome, identify problems arising from human impact, and find solutions to these problems. Students will be challenged to demonstrate their learning in a creative and engaging manner.

Southern Montessori Middle School is a mixed age year 7-9 community located in the southern suburbs of Adelaide with a strong focus on academics. We combine our thirty six Year 7, 8 and 9 students together and work in small, ability-based groups following the Australian Curriculum but presented with Montessori principles. We are committed to innovative approaches to learning that are not only relevant and engaging, but also prepare our students for their future.

Teachers Siobhan Curran and Toni Maddock have developed this unit of work and series of activities designed for students to not only think critically and creatively about the content, but also think creatively about how VR technology can be used as a tool to assist their learning. Having not used VR in the past, students and teachers alike are excited to take part in this research and to see what the students can achieve.

This post bought to you by teacher and co-researcher Toni Maddock

Against reductionism: VR for education

I recently received an intriguing inquiry asking if there was a standard for measuring the effective use of VR in education? What a thought-provoking question (and I thank my colleague for this because it really got me thinking). It got me thinking that now is the time to disrupt some common assumptions about VR (and XR – eXtended Reality) technology for learning so that we can genuinely work out how to best to use the tech in schools and other formal educational settings.

Reductivist assumptions – reducing the complexity of learning and of learning with VR – are sometimes evident in the field of VR for education. These assumptions will prevent us from understanding the many and varied issues related to designing educational VR applications and implementing these at scale in classrooms, virtual and real. Reductionist assumptions restrict our critical engagement and our ability to imagine possibilities for VR in classrooms. Reductionism is a hasty and lazy intellectual and practical position that seeks to simplify the multi-dimensionality of phenomena (things in the world such as this thing we call ‘learning’). While reductionist accounts of using VR for education can offer comforting and easily digestible ‘answers’ to difficult or intransigent issues, this approach will, overall, act as a roadblock for educators navigating towards use of the technology to realise its creative, cognitive, moral and social potential for humans.

Here are a five reductivist assumptions that need challenging:

Reductivist assumption 1: Learning is recalling facts and figures and VR should facilitate this.

Let’s not reduce the difficult and joyous processes of learning to just recalling facts and figures for a quiz. Sure, declarative knowledge acquisition (recalling facts, figures, data, information – the core stuff of content knowledge) is important. This is why remembering (or recall as educators say) is a foundational cognitive process of Blooms Revised Taxonomy (Figure 1) [1, 2].

Figure 1: Blooms Revised Taxonomy [1]

Blooms

Researchers often focus on the question of whether exposure to a VR experience can increase recall of declarative knowledge (facts and figures) especially compared to having the same content delivered via a different type of media or through a traditional instructional approach. This type of research is important as it provides a measure of content knowledge acquisition (usually in the short term, unless the researcher re-tests participants to see whether the knowledge has been retained). From a research perspective it is reasonably easy to give a pre and post quiz on facts and figures and compare the results (and perhaps even give learners other surveys that measure factors that might mediate declarative knowledge acquisition such as an individual’s self-efficacy, spatial awareness, motivation etc.).

However, we would be doing ourselves a disservice as educators and researchers if the only type of learning we cared about was recall of declarative knowledge. As Bloom’s Revised Taxonomy points out, we want to know if student understand the implications of what they can remember, can apply it to similar or novel situations (transfer), deploy that knowledge as part of critical analysis and evaluation, and use it as part of a process that creates completely novel perspectives and products.

We require more research on designing and using VR, and other XR tech such as augmented reality, to support learning that includes but moves well beyond the bottom layers of Bloom’s taxonomy. In practice this means examining VR products for their ‘baked in’ or implicit assumptions about what learning is – if applications only promote recall of declarative knowledge with some limited understanding, then that is fine, as long as we recognise this as only one (vital but limited) facet of learning.

We might also ask ourselves why we should make an investment in VR hardware and software if declarative knowledge recall is the only learning outcome from an app especially if this can be achieved through other more ubiquitous, cheaper technology and/or traditional classroom pedagogical practice?

Reductivist assumption 2: We just need a killer VR educational app and the pedagogical use case will follow.

Some technologists like to talk about killer apps (the one app to rule them all) and how it will create the ultimate “use case” (meaning the best way to pedagogically use VR even though they don’t use the word pedagogy). There are also educators who like to flip this and say, ‘pedagogy before technology’. Both positions are naive simplifications.

I’ve said it before, and I will continue saying it – Pedagogically, VR is not one thing.

As represented in Figure 3, we can think of VR as a new form of media that can empower learners through consumption of immersive experiences and some apps allow learners to create their own virtual objects and worlds to demonstrate learning. There are also VR apps that simulate total learning environments such as laboratories or clinical settings.

Figure 3. Conceptions of immersive VR for learning [3]

Conceptions of VR diagram Feature Image

VR applications can offer diverse types of learning experiences Consider the varying degree of active learning that students can have in different virtual environments (Table 1).

Table 1. Typology of VR environments by student learning interaction and autonomy [3].

Typology

We have a long way to go to theorise and explore the many different pedagogical uses for VR and which of these are most suitable for classrooms across age levels, subject areas, and for different types of learning objectives. I hope that there will be a smarm of killer apps that can create a buzz in the classroom and that these reflect beautiful, pedagogical diversity.

Equally, we need to be much more critical in interrogating the pedagogical assumptions that underpin conceptions of instruction and learning in VR apps. It’s no use saying ‘pedagogy before technology’ when VR applications (and other forms of Edtech) already have pedagogical assumptions baked in.

Reductivist assumption 3: VR is the curriculum

VR apps will never be the curriculum – they can never replace the complex and diverse ways that teachers interpret, enact and truly differentiate curriculum in their classrooms. Thinking that a killer VR app will arrive that will replace a teacher’s skillful mediation of curriculum to student diversity is a furphy. What teachers need are VR apps, with real classroom case studies attached to them, that can help them imagine possibilities and enhancements as they plan and implement their interpretation of curriculum for their students. We need to explore how teachers design curriculum that weaves VR apps through it to enhance specific types of learning.

The metaphor needs to be weaving into curriculum not replacing it.

Reductivist assumption 4: We need a standard way to assess learning with VR

Assessing learning with VR will be as varied as its pedagogical uses and the learning objectives that flow from these. Learning is not one thing. Blooms Revised Taxonomy provides a window into the multidimensional cognitive aspects of learning and being clear about the learning objectives when selecting applications is vital. As teachers ask yourself these questions:

Are we using a VR application to assist with declarative knowledge acquisition? Or, to allow learners to develop procedural knowledge and skills they can practice in a VR simulation? Do we want applications that provide opportunities for transfer of existing knowledge? Or select VR environments that can, in-situ, foster ‘soft skills’ such as communication, collaboration, and time-management? Does a VR app assist with developing affective or moral learning related to empathy or examining belief systems, for example? Are we looking to provide opportunities for learning that involve verbal and non-verbal communication with others for (inter)cultural understanding and exchange? Or, to provide a virtual forum that gives students an opportunity to meet experts who can share their wisdom in dialogue and action?  Do we want to use VR applications that can fire up the imagination to promote creativity and the exchange of creative processes and products? Or select VR environments that give students access to unique artistic, intellectual, cultural or sporting events?

Just as VR is pedagogically not one thing, its potential nexus with the varied types of learning and learning objectives creates a rich educational tapestry. For each of the types of learning listed above, the teacher would identify or develop assessment criteria with metrics and non-quantifiable means of determining if learning objective/s had been met, and the role of VR in this.

While commercial VR is a young technology in formal educational contexts such as schools, we have reached a point where we need to complicate our conception about learning with the tech including our approach to assessment, not simply it.

Reductivist assumption 5: Hardware choices are technical choices

Hardware choices are difficult. In schools we are talking about investment of precious resources with an evolving yet not established evidence base on pedagogical models and efficacy for learning with VR. Hardware choices are not however only technical choices. The hardware, platform and software that teachers choose will have ethical implications for their schools and classrooms.

This is a space filled with tensions and unknowns when legally and ethically it should be clear to educators, students and their families exactly what data is being collected, harvested in real-time and shared/sold-on by tech companies whose VR hardware, software and integrated platforms are being used in classrooms. Artificial intelligence can automatically harvest vast amounts of highly identifiable biometric data (information about individual bodies such as gaze patterns and pupil dilation, movement, proximity to virtual objects, voice etc). Is this data being collected, for what purposes and with what consent? Camera built into VR headsets can capture the real environment that students are in – what implications does this have for privacy?

Manufacturers of hardware usually put an age limit in their online safety advice, and it would be wise for teachers to check this too before procurement. Educators should also be aware that social VR, while opening the world up to learners also has child protection issues.

Many countries have weak regulation regarding data harvesting and the selling-on of such sensitive data including biometrics, which is usually gathered without us knowing. It is up to teachers to think ahead on these types of ethical issues and make fully informed, justifiable procurement decisions. I know this is a difficult job and puts educators in a quandary, but technical choices in this field are also ethical choices.

FYI – The Voices of VR podcast frequently covers privacy in XR – https://voicesofvr.com/

This post is bought to you by A/Prof Erica Southgate.

References

[1] Vanderbilt University (n.d). Blooms Taxonomy Diagram. Retrieved https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

[2] Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into practice41(4), 212-218.

[3] Southgate, E. (2020). Virtual reality in curriculum and pedagogy: Evidence from secondary classrooms. Routledge.

Cover photo by Rodion Kutsaiev: https://www.pexels.com/photo/white-and-brown-round-frame-7911758/

What the VR School Study is bringing you in 2022

During 2022, the VR School Study will be reporting on research conducted in collaboration with the Association of Independent Schools of South Australia (AISSA) and their member schools — SEDA College, Pembroke School and Trinity College — located in Adelaide. The research is also a partnership with 360° VR company VRTY. The research will focus on students as VR content creators in junior secondary school STEM with occasional forays into primary (elementary) school. We will be exploring pedagogical approaches to leveraging VR in STEM classrooms for Deeper Learning and creativity, sharing curriculum ideas, and showcasing the 360° VR content students create for authentic audiences with their unique perspectives on learning through the technology. We will report on progress through numbered project updates from each school which will use the same cover image so that they will be easily identifiable as part of set.  Look out for these as well as other posts that will pull together findings across schools. Let the VR School Study in 2022 begin!

Happy 5th birthday to the VR School Study

In late August 2021, the VR School study celebrated 5 years of ground-breaking research. Associate Professor Erica Southgate highlights three key findings from research so far:

Research papers and teaching resources are available on the VR School website under the Resources tab and there is a book for those who are interested:

An interview about the VR School Study

The VR School Study has featured in an interview published by the Independent Schools Association of NSW (AISNSW). The interview covers areas such as leveraging the learning affordances of VR to develop deeper understanding, problem-solving and creativity with students. You can read the interview here.

Student 360° content creation for learner agency

How do children go about planning the content and experiences of virtual environments that they are creating to demonstrate learning mastery? How do they think about creating virtual environments for their peers to learn in? What are the special learning outcomes related to this? Not much is known about these areas. 

The VR School Study is interested in students as virtual environment content creators. As part of the research, we collected data on the approaches students take when creating their own virtual worlds to demonstrate mastery of learning. This blog reports on interesting findings from the Athelstone School Innovative Languages project where primary (elementary) aged children are building their own 360° virtual tours to demonstrate mastery of the Italian language.

The students are using VRTY, a platform that allows them to plan and create their virtual worlds without needed to code. The platform provides easy-to-use tools with built in tutorials and a fun guide so that students can independently learn to use the platform after a couple of formal training sessions. Previous blog posts describe the VRTY platform and how it is leveraged through the teacher’s curriculum design. The first step, after training, is for students to research and plan their virtual tour. The planning involves storyboarding through VRTY. Students need to:

  1. Locate and choose the 360° photo scenes of Italy that best fit a tour narrative.
  2. Locate cultural and historical images that could be embedded in each scene.
  3. Create their own content to embed in the scene such as text and sound file that draw on the vocabulary mandated and reflect their research on cultural and historical information about Italy.
  4. Design a narrative through storyboarding in VRTY that reflects the story they want to tell and consider whether the tour experience should be linear or non-linear (the image below is of one student’s storyboard).
  5. Create each 360° scene and embed their content into it in an engaging way and place teleporter hotspots in the scenes so those experiencing the tour can move between scenes.  

Fourteen students from a mixed ability class chose to be part of the project with 11 virtual worlds in total created – some students chose to work in pairs. Equal numbers of boys and girls participated. On average student virtual worlds comprised six 360° scenes. Overall, students created 187 pieces of content to embed in scenes in their virtual worlds, including 50 sound files and 137 information markers. The cover image to this blog post is a screen shot from the student tour ‘Journey around Rome’ which shows student created information and sound markers embedded into the scene.

Interestingly, 7 of the 11 worlds were structured according to a non-linear narrative. Non-linear narratives allowed those experiencing the tour to move back and forth between all or most 360° scenes. Students who developed a non-linear narrative storyboard explained that this allowed have the freedom to go back and check out aspects of a scene they might have missed or enjoyed. The image below is of a non-linear narrative storyboard developed in VRTY. The virtual tour was created by a female student who called it ‘Journey around Rome’ and it allowed the traveler to move between a number of historic sites with all sorts of images, text and sound files in English and Italian embedded into them which used the mandated vocabulary and other Italian. Best still the traveler could return to a hotel room and decide which day trip they might take next or they could go back and visit somewhere they had already been.

The storyboard in VRTY for ‘Tour Around Rome’ illustrates the non-linear narrative created by the students with arrow indicating the direction of travel that was possible between 360° scenes.

This sophisticated non-linear narrative approach to constructing a user experience was premised on creating a sense of agency for those experiencing the tour (or other learners). In choosing non-linear narratives some children were tapping into the strength of developing learner agency when designing their virtual worlds. Non-linear narratives were not essential for developing agency but, in many cases, were important to this.

The significance of developing agency in learning cannot be underestimated, as Williams (2017) explains:

“Students with agency develop a self-perception that is based on their abilities as independent thinkers. Our task as educators is not to tell them what to think but to help reveal their thinking by reflecting back to them what we are observing and noticing and naming their acts of problem solving. This feedback builds a metacognitive awareness that reinforces their identities as capable thinkers who are able to construct their own understandings. This mode of learning shifts the locus of power from the teacher to the student, thus setting up students as the experts in their own learning.” (p. 11).

The Athelstone School VR project illustrates how many students themselves understand the significance of agency in creating engaging and efficacious 360° learning environments.

Reference

Williams, P. (2017). Student Agency for Powerful Learning. Knowledge Quest45(4), 8-15.

Training children in 360° content creation

An essential part of scaffolding digital learning when using emerging technology in schools is the provision of developmentally appropriate training on using platforms to meet learning objectives. While there is a lot of talk about generations Y and Z being digital natives, there is great variability in the capability of children and young people in using digital tools for learning, especially when it is comes to creating rather than consuming products.

Throughout the Athelstone School project we have thought carefully about training and supporting primary school aged students (11 – 12years) in using the 360° VRTY platform or content creation.  In 2019 we did a pilot study using VRTY with Year 5 students which helped us hone the training approach. In this phase of the study student training was conducted via teleconference and lasted 40 minutes. VRTY personnel delivered the training, while the teachers and researcher were on hand to assist. This initial training involved a general introduction to using the platform to create virtual worlds in screen mode. We used a ‘sticky note’ exercise to evaluate the training where students writing down their comments on a post-it note about the training so that we could gauge the class’s training experience. This exercise revealed most students enjoyed the training but that some found it challenging as the examples below show.

Some student feedback from the first training exercise.

In 2020, we expanded the training and support approach to include an additional teleconference session on how to save and share virtual content with others in screen and immersive modes. VRTY designed a special handbook for students on this step-by-step process. This handbook was printed out and put on each desk for easy referral. This supplemented to in-platform tutorials and information, providing an option for students who might prefer more conventional reference material to support learning. This in-class training was undertaken via conference which we already had practice with before the necessity of conducting such sessions due to COVID restrictions.

Training in action from the student perspective.

One of the learning objectives for the unit of work was that students could use the on-desk training handbook effectively for assistance to trouble-shoot issues as they arose. The evaluation indicated that all students met this learning objective.

Our experience shows that primary school students may need different training and resource approaches to build confidence and scaffolding them towards competence in using 360° content creation tools. The training response included provision of in-platform instructions and tutorials with a back-up paper-based manual available on student desks. Once confidence was developed, students played and learnt through this process too. Multi-pronged training approaches coupled with practice and play makes perfect.

Training in progress 21st century style.

This post bought to you by A/Prof Erica Southgate, the VRTY team Kingston Lee-Young and Sarah Lee and the teachers of Athelstone School.

‘Persi in Citta’ unit of work for the Athelstone School VR project

Developing units of work that allow for student VR content creation involves: (a) sequencing and scaffolding learning for curriculum-mandated content and skill acquisition; and, (b) allowing time for students to develop new technology expertise via problem-solving, creative experimentation and collaboration.

In the Athelstone School VR project, primary (elementary) school students use the 360° VRTY platform to create a travel journey that demonstrates Italian language acquisition and knowledge of Italian culture. The learning objectives derive directly from the Australian Curriculum.

Below is the unit of work ‘Persi in Citta’ (Lost in the City), developed for the VR project by Athelstone language teacher Angelica Cardone and Jo Romeo. The unit of work was implemented this term with primary school students in Year 6 (11-12 years of age).

………………………………………………………………………………….

‘Persi in Citta’ (Lost in the City) unit of work

Learning Intention – to use and develop directional language in the VR platform whilst creating different scenes in Italian cities.

Lesson 1

  • Introduce the booklets and go through it as a class (VRTY student handbook)
  • Re – familiarize themselves with the platform and look at where students were in Term 1 in terms of importing 360 degree images, information markers, portal markers and importing pictures etc.
  • Allow time to work on their world.

Lesson 2

  • Students to work on their information markers, limit to at least 4 per picture or scene.
  • Information marker must have information about the landmark they have chosen to use, information must be in English and have the Italian translation.

Lesson 3

  • After information markers have been used and checked by the teacher students to use portal markers so they can move through scenes.
  • Once portal markers have been used to move in and out of scenes directions will need to be written in to allow others to use the world as a new traveller to Italy. E.g. – Excuse me where is the Colosseum? Scusa dov’e` il Colosseo?

Lesson 4

  • Use directional language learnt in lessons and put them in their scenes.
  • Portal markers will need to transport the visitors to the location.

Lesson 5

  • Proposal to use the headsets and phones to view the worlds they have created in the VRTY platform. Proposal to use the 360 camera for producing own images to import into the VRTY platform.

Australian Curriculum Achievement Standards

Communication

  • Informing – Gather information from a range of sources (ACLITC043) and represent information appropriately for different audiences using a variety of modes (ACLITC044).
  • Creating – Create imaginative texts for different audiences such as digital stories using characters, places, ideas and events (ACLITC046)
  • Translating – Create simple bi lingual texts and discuss what translates easily or not (ACLITC048)

Understanding

  • Systems of Language – Use grammatical knowledge to interpret and create meaning in Italian (ACLITU052)
  • Language variation and change – Recognise that language use varies according to the context of situation and culture (ACLITU054)

Success criteria

 YesDeveloping
Can student import a 360 degree image correctly.  
Can student import an information marker and use effectively.  
Student can import a portal marker and use effectively.  
Student can use directional language appropriately to navigate through the scene.  
Was able to work collaboratively in pairs or small groups.  
Used the student handbook effectively for assistance if required.  

In addition to the Languages Curriculum outcomes the unit of work develops the following Level 4 General Capabilities from the Australian Curriculum:

ICT CAPABILITY

Investigating with ICT

  • Locate generate and access data and information: locate, retrieve or generate information using search engines and simple search functions and classify information in meaningful ways

Creating with ICT

  • Generate ideas plans and processes: use ICT effectively to record ideas, represent thinking and plan solutions
  • Generate solutions to challenges and learning area tasks: independently or collaboratively create and modify digital solutions, creative outputs or data representation/transformation for articular audiences and purposes

Communicating with ICT

  • Collaborate share and exchange: select and use appropriate ICT tools safely to share and exchange information and to safely collaborate with others

CRITICAL AND CREATIVE THINKING CAPABILITY

Inquiring – identifying, exploring and organising information and ideas

  • Identify and clarify information and ideas: identify and clarify relevant information and prioritise ideas
  • Organise and process information: analyse, condense and combine relevant information from multiple sources

Generating ideas, possibilities and actions

  • Imagine possibilities and connect ideas: combine ideas in a variety of ways and from a range of sources to create new possibilities

PERSONAL AND SOCIAL CAPABILITY

Self-management

  • Work independently and show initiative: assess the value of working independently, and taking initiative to do so where appropriate
  • Become confident resilient and adaptable: devise strategies and formulate plans to assist in the completion of challenging tasks and the maintenance of personal safety

Social management

  • Communicate effectively: identify and explain factors that influence effective communication in a variety of situations
  • Work collaboratively: contribute to groups and teams, suggesting improvements in methods used for group investigations and projects
  • Make decisions: identify factors that influence decision making and consider the usefulness of these in making their own decisions

VR safety and hygiene protocol for the Athelstone School Study

The VR School Study has always been concerned with safe and ethical use of immersive technologies especially with children and young people, and in schools. We were the first to create safety resources and procedures for teachers and students and, in the age of the Covid-19 pandemic, we continue to make safety and hygiene the top priority.

Hence, we have developed a safety protocol and set of related resources to address hygiene and safety for VR headsets that use mobile phones – this is the type of equipment we are using for the 360° VR content creation that is the basis of the Athelstone Italian language learning study. The resources were developed for training primary (elementary) school aged children in Year 6 (11-12 years old).

Context always matters when assessing and addressing risk including VR use in classrooms, especially during a pandemic. When undertaking risk assessment and development of protocols and resources to mitigate risk for VR (or any equipment digital or otherwise), each school must address their local conditions, follow expert advice on hygiene and safety, and develop their own risk assessment, protocols and resources.

For the Covid-19 state-of-play in South Australia (SA), where Athelstone School is located, see the SA government updates here – https://www.covid-19.sa.gov.au/home/dashboard and the SA Department of Education website on Covid-19 here – https://www.education.sa.gov.au/supporting-students/health-e-safety-and-wellbeing/covid-19-coronavirus. Our protocol and resources were developed in August 2020 when the Covid-19 situation was reflected in the snapshot from the government website below:

Here is a summary of the risks identified and the proposed mitigation strategies developed in relation to context:

Potential riskMitigation strategy
Covid-19 transmission through student sharing of VR headsets and phones– Assign each student their own headset, box for headset storage and phone
– Label headsets, storage box and phone with the name of the student to allow students and teachers to monitor the use of personally assigned equipment.
– Teachers train students in not sharing headsets, storage box or phones and to always return headset to its assigned box.
– Reinforce safety and hygiene messages and procedure in class at the beginning of the lesson and with a poster displayed at the front of the classroom and with a laminated version on each desk.
– Teachers in-class monitoring that students use their assign headset and pack headset into assigned box.
– For the duration of the research no other students or classes use equipment.  
Lack of compliance with Education Department Covid-19 advice for schools  – Principal does daily online checks of Department’s Covid-19 advice for schools to ensure compliance and that the project’s risk mitigation strategies do not contravene advice.
Poor VR headset and phone hygiene– At the beginning and end of each lesson students wash/sanitise their hands.
– At the end of each lesson students use disposable sanitiser wipes to clean their assigned headset (except for lenses) and phone at the end of each lesson and return VR headset to its assigned box.  
Teacher handling of phone after it’s been sanitised may put them at risk  – Teachers use disposable gloves to collect phones from students and connect these to charging station.
Desk contamination with from VR headset– At the end of the lesson and after wiping their headsets and phones, students use sanitiser wipes to clean their desk and the laminated safety poster which is on their desk.  
Improper disposal of used sanitiser wipes and gloves– At the end of each lesson students dispose of used disinfectant/alcohol cloths in plastic bag that has no tears or holes in it and this is tied shut by teachers who dispose of it directly into school skip bin.
– Teachers dispose of used gloves in plastic bag that has no tears or holes in it and this is tied shut by teachers who dispose of it directly in to school skip bin.  
Students experience cybersickness– Students trained to recognise signs of cybersickness or discomfort and to immediately take headset off and tell teacher.
– The training message is reinforced on safety poster displayed in classroom with a laminated version on each desk.
– Students buddy-up to check on each other during use of headset.
– Limit of 15 minutes per lesson in headset monitored by teacher and student-buddy.  
Students move out of seat with VR headset on and injury themselves or others– Students receive training on staying seated while they have the headset on.
– The training message is reinforced on safety poster displayed in classroom with a laminated version on each desk.
– Students buddy up to make sure each remains seated and teachers monitor this in class.  

Here are the teacher-delivered safety and hygiene training script for students:

Here is the teacher safety and hygiene classroom procedure:

The ‘Be VR Safe’ poster for display in classrooms and on student’s desks is a child-friendly version of the safety and hygiene procedure outlined in the training script.

All these resources can be downloaded from the resources section of this website.

On a related note – Since the beginning of the pandemic, the VR research and industry sectors have been working overtime to define and address safe use of high-end VR (where the computing is in the headset) and although there is no definitive advice this article covers some of the issues –  https://interactions.acm.org/blog/view/evaluating-immersive-experiences-during-covid-19-and-beyond

Until next time, stay safe.

A/Prof Erica Southgate

Cover photo by cottonbro from Pexels

Blog at WordPress.com.

Up ↑