Students co-creating safety guidelines for VR

Throughout 2022, we are focused on students as educational VR content creators. This includes students taking an active role in designing their own guidelines for safely using VR equipment. A visit to Trinity College at the start of their VR project saw Steve Grant, Director of Innovation and Creativity, facilitate a brainstorming session with Year 7 students where they worked together to come up with safety guidance for their project. In addition, students also worked as a whole class to develop ideas about good design in VR. At Southern Montessori School, teacher Toni Maddock led her middle school class through a similar co-design process. This video provides a great insight into the start of the project at Southern Montessori with students working together to develop their own safety instructions. As these teachers demonstrate, facilitating powerful VR learning experiences involves empowering students from the very first lesson.

Southern Montessori School joins the VR School Study

Southern Montessori Middle School is excited to launch our VR project. Southern Montessori’s VR project is part of an integrated Humanities and Science unit based on the inquiry question: ‘How can we secure food for our future?’ Students will be using VR to create their own biome, identify problems arising from human impact, and find solutions to these problems. Students will be challenged to demonstrate their learning in a creative and engaging manner.

Southern Montessori Middle School is a mixed age year 7-9 community located in the southern suburbs of Adelaide with a strong focus on academics. We combine our thirty six Year 7, 8 and 9 students together and work in small, ability-based groups following the Australian Curriculum but presented with Montessori principles. We are committed to innovative approaches to learning that are not only relevant and engaging, but also prepare our students for their future.

Teachers Siobhan Curran and Toni Maddock have developed this unit of work and series of activities designed for students to not only think critically and creatively about the content, but also think creatively about how VR technology can be used as a tool to assist their learning. Having not used VR in the past, students and teachers alike are excited to take part in this research and to see what the students can achieve.

This post bought to you by teacher and co-researcher Toni Maddock

Against reductionism: VR for education

I recently received an intriguing inquiry asking if there was a standard for measuring the effective use of VR in education? What a thought-provoking question (and I thank my colleague for this because it really got me thinking). It got me thinking that now is the time to disrupt some common assumptions about VR (and XR – eXtended Reality) technology for learning so that we can genuinely work out how to best to use the tech in schools and other formal educational settings.

Reductivist assumptions – reducing the complexity of learning and of learning with VR – are sometimes evident in the field of VR for education. These assumptions will prevent us from understanding the many and varied issues related to designing educational VR applications and implementing these at scale in classrooms, virtual and real. Reductionist assumptions restrict our critical engagement and our ability to imagine possibilities for VR in classrooms. Reductionism is a hasty and lazy intellectual and practical position that seeks to simplify the multi-dimensionality of phenomena (things in the world such as this thing we call ‘learning’). While reductionist accounts of using VR for education can offer comforting and easily digestible ‘answers’ to difficult or intransigent issues, this approach will, overall, act as a roadblock for educators navigating towards use of the technology to realise its creative, cognitive, moral and social potential for humans.

Here are a five reductivist assumptions that need challenging:

Reductivist assumption 1: Learning is recalling facts and figures and VR should facilitate this.

Let’s not reduce the difficult and joyous processes of learning to just recalling facts and figures for a quiz. Sure, declarative knowledge acquisition (recalling facts, figures, data, information – the core stuff of content knowledge) is important. This is why remembering (or recall as educators say) is a foundational cognitive process of Blooms Revised Taxonomy (Figure 1) [1, 2].

Figure 1: Blooms Revised Taxonomy [1]

Blooms

Researchers often focus on the question of whether exposure to a VR experience can increase recall of declarative knowledge (facts and figures) especially compared to having the same content delivered via a different type of media or through a traditional instructional approach. This type of research is important as it provides a measure of content knowledge acquisition (usually in the short term, unless the researcher re-tests participants to see whether the knowledge has been retained). From a research perspective it is reasonably easy to give a pre and post quiz on facts and figures and compare the results (and perhaps even give learners other surveys that measure factors that might mediate declarative knowledge acquisition such as an individual’s self-efficacy, spatial awareness, motivation etc.).

However, we would be doing ourselves a disservice as educators and researchers if the only type of learning we cared about was recall of declarative knowledge. As Bloom’s Revised Taxonomy points out, we want to know if student understand the implications of what they can remember, can apply it to similar or novel situations (transfer), deploy that knowledge as part of critical analysis and evaluation, and use it as part of a process that creates completely novel perspectives and products.

We require more research on designing and using VR, and other XR tech such as augmented reality, to support learning that includes but moves well beyond the bottom layers of Bloom’s taxonomy. In practice this means examining VR products for their ‘baked in’ or implicit assumptions about what learning is – if applications only promote recall of declarative knowledge with some limited understanding, then that is fine, as long as we recognise this as only one (vital but limited) facet of learning.

We might also ask ourselves why we should make an investment in VR hardware and software if declarative knowledge recall is the only learning outcome from an app especially if this can be achieved through other more ubiquitous, cheaper technology and/or traditional classroom pedagogical practice?

Reductivist assumption 2: We just need a killer VR educational app and the pedagogical use case will follow.

Some technologists like to talk about killer apps (the one app to rule them all) and how it will create the ultimate “use case” (meaning the best way to pedagogically use VR even though they don’t use the word pedagogy). There are also educators who like to flip this and say, ‘pedagogy before technology’. Both positions are naive simplifications.

I’ve said it before, and I will continue saying it – Pedagogically, VR is not one thing.

As represented in Figure 3, we can think of VR as a new form of media that can empower learners through consumption of immersive experiences and some apps allow learners to create their own virtual objects and worlds to demonstrate learning. There are also VR apps that simulate total learning environments such as laboratories or clinical settings.

Figure 3. Conceptions of immersive VR for learning [3]

Conceptions of VR diagram Feature Image

VR applications can offer diverse types of learning experiences Consider the varying degree of active learning that students can have in different virtual environments (Table 1).

Table 1. Typology of VR environments by student learning interaction and autonomy [3].

Typology

We have a long way to go to theorise and explore the many different pedagogical uses for VR and which of these are most suitable for classrooms across age levels, subject areas, and for different types of learning objectives. I hope that there will be a smarm of killer apps that can create a buzz in the classroom and that these reflect beautiful, pedagogical diversity.

Equally, we need to be much more critical in interrogating the pedagogical assumptions that underpin conceptions of instruction and learning in VR apps. It’s no use saying ‘pedagogy before technology’ when VR applications (and other forms of Edtech) already have pedagogical assumptions baked in.

Reductivist assumption 3: VR is the curriculum

VR apps will never be the curriculum – they can never replace the complex and diverse ways that teachers interpret, enact and truly differentiate curriculum in their classrooms. Thinking that a killer VR app will arrive that will replace a teacher’s skillful mediation of curriculum to student diversity is a furphy. What teachers need are VR apps, with real classroom case studies attached to them, that can help them imagine possibilities and enhancements as they plan and implement their interpretation of curriculum for their students. We need to explore how teachers design curriculum that weaves VR apps through it to enhance specific types of learning.

The metaphor needs to be weaving into curriculum not replacing it.

Reductivist assumption 4: We need a standard way to assess learning with VR

Assessing learning with VR will be as varied as its pedagogical uses and the learning objectives that flow from these. Learning is not one thing. Blooms Revised Taxonomy provides a window into the multidimensional cognitive aspects of learning and being clear about the learning objectives when selecting applications is vital. As teachers ask yourself these questions:

Are we using a VR application to assist with declarative knowledge acquisition? Or, to allow learners to develop procedural knowledge and skills they can practice in a VR simulation? Do we want applications that provide opportunities for transfer of existing knowledge? Or select VR environments that can, in-situ, foster ‘soft skills’ such as communication, collaboration, and time-management? Does a VR app assist with developing affective or moral learning related to empathy or examining belief systems, for example? Are we looking to provide opportunities for learning that involve verbal and non-verbal communication with others for (inter)cultural understanding and exchange? Or, to provide a virtual forum that gives students an opportunity to meet experts who can share their wisdom in dialogue and action?  Do we want to use VR applications that can fire up the imagination to promote creativity and the exchange of creative processes and products? Or select VR environments that give students access to unique artistic, intellectual, cultural or sporting events?

Just as VR is pedagogically not one thing, its potential nexus with the varied types of learning and learning objectives creates a rich educational tapestry. For each of the types of learning listed above, the teacher would identify or develop assessment criteria with metrics and non-quantifiable means of determining if learning objective/s had been met, and the role of VR in this.

While commercial VR is a young technology in formal educational contexts such as schools, we have reached a point where we need to complicate our conception about learning with the tech including our approach to assessment, not simply it.

Reductivist assumption 5: Hardware choices are technical choices

Hardware choices are difficult. In schools we are talking about investment of precious resources with an evolving yet not established evidence base on pedagogical models and efficacy for learning with VR. Hardware choices are not however only technical choices. The hardware, platform and software that teachers choose will have ethical implications for their schools and classrooms.

This is a space filled with tensions and unknowns when legally and ethically it should be clear to educators, students and their families exactly what data is being collected, harvested in real-time and shared/sold-on by tech companies whose VR hardware, software and integrated platforms are being used in classrooms. Artificial intelligence can automatically harvest vast amounts of highly identifiable biometric data (information about individual bodies such as gaze patterns and pupil dilation, movement, proximity to virtual objects, voice etc). Is this data being collected, for what purposes and with what consent? Camera built into VR headsets can capture the real environment that students are in – what implications does this have for privacy?

Manufacturers of hardware usually put an age limit in their online safety advice, and it would be wise for teachers to check this too before procurement. Educators should also be aware that social VR, while opening the world up to learners also has child protection issues.

Many countries have weak regulation regarding data harvesting and the selling-on of such sensitive data including biometrics, which is usually gathered without us knowing. It is up to teachers to think ahead on these types of ethical issues and make fully informed, justifiable procurement decisions. I know this is a difficult job and puts educators in a quandary, but technical choices in this field are also ethical choices.

FYI – The Voices of VR podcast frequently covers privacy in XR – https://voicesofvr.com/

This post is bought to you by A/Prof Erica Southgate.

References

[1] Vanderbilt University (n.d). Blooms Taxonomy Diagram. Retrieved https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/

[2] Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into practice41(4), 212-218.

[3] Southgate, E. (2020). Virtual reality in curriculum and pedagogy: Evidence from secondary classrooms. Routledge.

Cover photo by Rodion Kutsaiev: https://www.pexels.com/photo/white-and-brown-round-frame-7911758/

New paper – Students creating a VR learning resource

In 2021, Trinity College, located in Adelaide, undertook a pilot study to explore how junior secondary students could create a 360° virtual reality learning resource on the science of energy for primary (elementary) school students. This collaborative project was important because there are very few studies on how school students can become VR content creators and use the power of the technology for authentic learning. Authentic learning involves actively demonstrating content mastery for real world applications – in this case using the new media of VR to teach younger peers about the wonders of science.

The team learnt a lot during the study with the main factor impacting the project being time due to curriculum constraints rather than secondary student creativity and engagement. Secondary female students were graded highly on the virtual world content creation task indicating that VR content creation can promote good learning outcomes and interest in emerging educational technology for girls.

Younger students generally found the VRTY platform easy to use and most enjoyed experiencing the 360° learning resource produced by their older peers. While the content knowledge of primary school students did not increase after using the learning resource, the project did provide promising results in shifting the current emphasis away from passive VR consumption in secondary school classrooms to active VR content creation by students, for students.

A research paper from the project will be presented at the 2022 IEEE VR KELVAR Workshop: K-12+ Embodied Learning through Virtual and Augmented Reality. The accepted version of the paper ‘School students creating a virtual reality learning resource for children’, is available in the University of Newcastle’s NOVA repository – http://hdl.handle.net/1959.13/1430150

To cite this paper:

Southgate, E., Grant, S., Ostrowski, S., Norwood, A., Williams, M. and Tafazoli, D. (2022). School students creating a virtual reality learning resource for children. Proceedings 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW).

This research is conducted in collaboration with, and funded by, the Association of Independent Schools of South Australia (AISSA).

Happy 5th birthday to the VR School Study

In late August 2021, the VR School study celebrated 5 years of ground-breaking research. Associate Professor Erica Southgate highlights three key findings from research so far:

Research papers and teaching resources are available on the VR School website under the Resources tab and there is a book for those who are interested:

An interview about the VR School Study

The VR School Study has featured in an interview published by the Independent Schools Association of NSW (AISNSW). The interview covers areas such as leveraging the learning affordances of VR to develop deeper understanding, problem-solving and creativity with students. You can read the interview here.

VR safety and hygiene protocol for the Athelstone School Study

The VR School Study has always been concerned with safe and ethical use of immersive technologies especially with children and young people, and in schools. We were the first to create safety resources and procedures for teachers and students and, in the age of the Covid-19 pandemic, we continue to make safety and hygiene the top priority.

Hence, we have developed a safety protocol and set of related resources to address hygiene and safety for VR headsets that use mobile phones – this is the type of equipment we are using for the 360° VR content creation that is the basis of the Athelstone Italian language learning study. The resources were developed for training primary (elementary) school aged children in Year 6 (11-12 years old).

Context always matters when assessing and addressing risk including VR use in classrooms, especially during a pandemic. When undertaking risk assessment and development of protocols and resources to mitigate risk for VR (or any equipment digital or otherwise), each school must address their local conditions, follow expert advice on hygiene and safety, and develop their own risk assessment, protocols and resources.

For the Covid-19 state-of-play in South Australia (SA), where Athelstone School is located, see the SA government updates here – https://www.covid-19.sa.gov.au/home/dashboard and the SA Department of Education website on Covid-19 here – https://www.education.sa.gov.au/supporting-students/health-e-safety-and-wellbeing/covid-19-coronavirus. Our protocol and resources were developed in August 2020 when the Covid-19 situation was reflected in the snapshot from the government website below:

Here is a summary of the risks identified and the proposed mitigation strategies developed in relation to context:

Potential riskMitigation strategy
Covid-19 transmission through student sharing of VR headsets and phones– Assign each student their own headset, box for headset storage and phone
– Label headsets, storage box and phone with the name of the student to allow students and teachers to monitor the use of personally assigned equipment.
– Teachers train students in not sharing headsets, storage box or phones and to always return headset to its assigned box.
– Reinforce safety and hygiene messages and procedure in class at the beginning of the lesson and with a poster displayed at the front of the classroom and with a laminated version on each desk.
– Teachers in-class monitoring that students use their assign headset and pack headset into assigned box.
– For the duration of the research no other students or classes use equipment.  
Lack of compliance with Education Department Covid-19 advice for schools  – Principal does daily online checks of Department’s Covid-19 advice for schools to ensure compliance and that the project’s risk mitigation strategies do not contravene advice.
Poor VR headset and phone hygiene– At the beginning and end of each lesson students wash/sanitise their hands.
– At the end of each lesson students use disposable sanitiser wipes to clean their assigned headset (except for lenses) and phone at the end of each lesson and return VR headset to its assigned box.  
Teacher handling of phone after it’s been sanitised may put them at risk  – Teachers use disposable gloves to collect phones from students and connect these to charging station.
Desk contamination with from VR headset– At the end of the lesson and after wiping their headsets and phones, students use sanitiser wipes to clean their desk and the laminated safety poster which is on their desk.  
Improper disposal of used sanitiser wipes and gloves– At the end of each lesson students dispose of used disinfectant/alcohol cloths in plastic bag that has no tears or holes in it and this is tied shut by teachers who dispose of it directly into school skip bin.
– Teachers dispose of used gloves in plastic bag that has no tears or holes in it and this is tied shut by teachers who dispose of it directly in to school skip bin.  
Students experience cybersickness– Students trained to recognise signs of cybersickness or discomfort and to immediately take headset off and tell teacher.
– The training message is reinforced on safety poster displayed in classroom with a laminated version on each desk.
– Students buddy-up to check on each other during use of headset.
– Limit of 15 minutes per lesson in headset monitored by teacher and student-buddy.  
Students move out of seat with VR headset on and injury themselves or others– Students receive training on staying seated while they have the headset on.
– The training message is reinforced on safety poster displayed in classroom with a laminated version on each desk.
– Students buddy up to make sure each remains seated and teachers monitor this in class.  

Here are the teacher-delivered safety and hygiene training script for students:

Here is the teacher safety and hygiene classroom procedure:

The ‘Be VR Safe’ poster for display in classrooms and on student’s desks is a child-friendly version of the safety and hygiene procedure outlined in the training script.

All these resources can be downloaded from the resources section of this website.

On a related note – Since the beginning of the pandemic, the VR research and industry sectors have been working overtime to define and address safe use of high-end VR (where the computing is in the headset) and although there is no definitive advice this article covers some of the issues –  https://interactions.acm.org/blog/view/evaluating-immersive-experiences-during-covid-19-and-beyond

Until next time, stay safe.

A/Prof Erica Southgate

Cover photo by cottonbro from Pexels

Some cool stuff from the VR Book

This article was first published by the Australian Association for Research in Education (29 June, 2020). I’m sharing it here because it highlights some interesting findings from the book.

Virtual Reality in school education: Australia leads the way with groundbreaking research

By Erica Southgate

In 2016, I attended a meeting and fortuitously sat next to the (now retired) principal of Callaghan College who asked me what type of research I’d like to do in schools. At the time a new high-end, highly immersive type of virtual reality (VR) hardware called the Oculus Rift had been released. This type of VR equipment was costly and needed an expensive computer to run but offered entry into amazing worlds. It provided high fidelity environments to be explored through gestural interaction via controllers that allowed you to use your virtual hands to interact with virtual objects and avatars (either other people or computer characters) and navigate in ways that felt incredibly embodied (I am addicted to flying and jumping off clouds in VR).

 I made a gentle pitch that I’d like to work with teachers to embed this technology into classrooms to see how it could be used for learning but that I had no idea what we might find. And so began the VR School Study, a collaboration with Callaghan College and later, Dungog High School, both government high schools in NSW, Australia.  It became the first research internationally to embed high-end VR in school classrooms.

VR School Study

The VR School Study is ongoing participatory research that aims to explore the use of immersive virtual reality in real classrooms. We focus on how VR can be used to enhance learning, its relationship to curriculum, and its implications for pedagogy. And we examine all the practical, ethical and safety issues that come with integrating emerging technology in classrooms. At the end 2018, the study reached a major milestone with the completion of two major case studies into the use of the technology in secondary schools.

An ‘arduous’ adventure in emerging technology

IN 2018, on the last day of research at Callaghan College, I interviewed two teachers about what it was like to embed an emerging technology in the classroom. The response was, ‘Arduous comes to mind.’ While we did have a laugh, the comment summed up a range of issues encountered during the research.

Space to accommodate VR and safety concerns

Trying to find an available classroom space large enough to accommodate the play areas needed for this VR, which is best used standing and moving around, proved difficult. On one campus we managed to get a room with a small storeroom off it that squeezed in three sets of VR equipment with play areas while at the other we had a larger former lab-preparation room attached to a classroom. Both VR rooms were beyond the immediate supervisory gaze of the teacher and so required me or a student to act as a safety ‘spotter’ to ensure there were no collisions with walls, furniture or peers. Even though there is a built in ‘Guardian System’ (a pop-up virtual cage mapped to the real environment you should stay within), some students became so immersed that they ignored it and needed intervention. Even now with ‘pass through’ cameras in some VR headsets (these allow the user to see the outside environment when they go beyond the Guardian System) some people become so immersed and are interacting with such speed that they can run into objects. Engineered safety solutions are not always enough to maintain safety.

Network and server issues

Getting the tech to work within the confines of the school internet network proved difficult. Game stores that allow multiplayer environments were blocked and internet work-arounds required. Teachers had to set-up individual student accounts which was time-consuming and often update applications in their own time. Our screen capture video, which showed a first-person view of what the student was seeing and doing in a virtual environment, indicated that the technology failed 15% of the time due to network, server and VR tracking drop-out. One of my favourite moments in student humour and resilience was when I heard one boy say to another as they who were fixing a server issue for the third time, “Aren’t you glad you signed up for this?”.

Content mastery and creativity through collaboration

Students were given the highest quality VR and ‘sandbox’ applications, such as Minecraft VR and Tilt Brush which allowed them to create in virtual environments without needing to code. Combined with clever curriculum design they undertook self-directed formative assessment tasks.

In Year 9 science this involved groups researching and developing a model of a body organ in Minecraft VR. The results were an astounding mix of scientific knowledge melded with creative endeavour developed through group problem-solving and collaboration inside and outside of VR.

Brain from up high

One group produced an anatomically correct, labelled eyeball which was toured by via a rollercoaster while another built a skyscraper of a brain sitting atop a spinal cord which you flew up to interact with engineered components representing neurons. While in VR, students narrated from memory the parts and function of the brain. Analysis of the screen capture video using a framework adapted from  work by Assistant Professor in Learning and Learning Processes the University of Oulu, Jonna Malmberg, indicated that the majority of students used the creative properties of VR to engage in highly collaborative science learning.

Inside the brain

At Dungog High School a senior drama class used single-player 3-D sculpting program Tilt Brush, as an infinite virtual design studio to explore symbolism in set design at real life scale and beyond. Students worked in groups to quickly prototype symbolic elements of their directorial vision with peers and the teacher moving in and out of VR to offer feedback. Mistakes were erased or changes made at the press of a button. The virtual studio of Tilt Brush melded with the drama studio to offer students an opportunity to view their design in 3D from the perspective of an audience member, director, designer or actor. All they needed to do was teleport round the virtual environment to do this.

Let’s leave behind the EdTech evangelism

An admission – I’m not a fan of the type of innovation discourse which permeates university managerial-speak and is associated with EdTech (educational technology) evangelism. This type of talk conjures up images of momentous leaps in ways of doing and knowing with the trope of the lone (male, yes it is a gendered) genius leading the charge with their vision of the future.

Innovation is incorrectly depicted as a development shortcut detached from contexts and the years of work that yield incremental improvements and insights, as Stanford University Director, Christian Seelos, and colleague Johanna Mair, argue. They warn against evaluating innovation only on positive outcomes as this can stifle experimentation required to progress an initiative in difficult or unpredictable environments.

This aligns with critical studies in EdTech where research is on the ‘state-of-the-actual’ rather than the ‘state-of-the-art’, as Distinguished Research Professor in the Faculty of Education, Monash University, Neil Selwyn reminds us. It entails moving away from trying to ‘prove’ a technology works for learning to scrutinizing what actually takes place especially in contexts that are not the ‘model’ well-resourced schools where technologies are often tested.

Teleporting away for now

As I have argued elsewhere, to get the best ethical and educational outcomes with emerging technologies we must carefully incubate these in schools (and not just resource-rich ones) in collaboration with willing teachers so that we can document incremental ‘innovation’ through ‘state-of-the-actual’ reporting. This can be an arduous project but one full of authentic and valuable insights for those willing to go on a research and pedagogical adventure. It’s this type of evidence, not EdTech evangelism, that we need.

For those who want more. In May 2020, I published findings from the study in Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (Routledge). As co-researchers, teachers from Callaghan College and Dungog High School contributed to their respective chapters in this book. The book offers new pedagogical frameworks for understanding how to best use the properties of VR for deeper learning as well as a ‘state-of-the-actual’ account of the ethical, practical and technical aspects of using VR in low-income school communities.

Erica Southgate (PhD) is Associate Professor of Emerging Technologies for Education at the University of Newcastle, Australia. She is lead author of the recent Australian Government commissioned report, Artificial intelligence and emerging technologies (virtual, augmented and mixed reality) in schools research report, and a maker of computer games for literacy learning. Erica is always looking for brave teachers to collaborate with on research and can be contacted at Erica.southgate@newcastle.edu.au. Erica is on Twitter@EricaSouthgate

This article was originally published on EduResearch Matters. Read the original article.AARE

An educator’s advice on what to look for in a 360° platform

360° content creation platforms are gaining popularity in schools as a way for students to create their own virtual environments and narratives (linear and branching) to demonstrate mastery of learning objectives.

Professionally, I think that students should be creating and sharing this content and not teachers (we should be worrying less about whether students can make a ‘perfect’ product and more concerned about the many technical, thinking and social skills they are learning as the create and share virtual environments, especially if they do this collaboratively.

360° content creation is certainly developmentally appropriate for primary school children and can be great fun for primary and secondary school students. Students can import scenes and annotate them or, better still, create their own 360° photo or video scenes to use as the basis for learning task. Here are some of things I look for as an educator in a 360° platform:

  1. Intuitive no-code mainly ‘drag and drop’ or easy content creation tools with good tutorial and online/real-time support.
  2. The ability to put in your own 360° video or photo foundation environments which can house media-rich content that students can create (video, photo, text, animation/gif) and that can link though hot spots or portals to create linear or branching way (joining environments with different media).
  3. Options for sharing and publishing 360 creations from private class to public viewing.
  4. Clear intellectual property and privacy policies including consideration of biometric* data harvesting – demonstrated knowledge of privacy legislation is required.
  5. Accessible analytics which make sense for learning at content creation and viewing/interaction phases.
  6. Preferably linked or supported by a teacher professional learning community who can share creations, pedagogical experiences and curriculum material.
  7. Easy to manage school and student account arrangements.
  8. Simple to understand advice on and ways to manage network compatibility and bandwidth implications for your school (and if it is a streaming platform, if your school network can accommodate this).

*Biometrics can be defined as the automated recognition and collection of measurable data on biological and behavioural characteristics of individuals. Behavioural data includes vocal patterns, eye tracking/gaze attention, gait tracking or typing recognition.  For more information on biometrics and other legal and ethical issues related to VR and AR technologies see this report for educators.

– This post bought to you by A/Prof Erica Southgate.

Feature image: Screenshot from https://www.360cities.net/search/@tags-aerial

Blog at WordPress.com.

Up ↑