Conceptions of VR + signature pedagogies = learning fit

In my recent book, I provide some explanatory frameworks on the pedagogical uses of VR. While much of the public discourse centres around technical differences between types of VR (i.e. the difference between 3 Degree of Freedom [DOF] vs 6 DOF) or whether 360° technology is ‘real’ VR, as an educator I think it is more important to focus on the pedagogical utility of the technology. One way of making pedagogical sense of VR is to conceptualise its different possibilities for learning with explicit connection to the signature pedagogies of disciplines (or school subjects derived from disciplines).

The diagram below (developed for the book) illustrates some key conceptions of VR for learning. VR applications can reflect one or more of these concepts.

When teachers are considering VR they should explore the learning experiences the application offers and how this might fit with the range of instructional strategies commonly used in specific subjects. For example, if you were teaching history you might ask if the software offers a means for transporting students to another place or time because this would fit well with the instructional repertoire usually deployed in the subject area. A core instructional strategy used in a subject is called a ‘signature pedagogy’ (Shulman, 2005). Signature pedagogies are important because they:

implicitly define what counts as knowledge in a field and how things become known…. They define the functions of expertise in a field. (Shulman, 2005, p. 56)

In the case of sparking the imagination through a historical re-creation experience (re-creation being a signature pedagogy of the discipline of history), a time-travel experience would traditionally be facilitated through the instructional use of text, maps, or video. Choosing a time-travel VR experience for history makes good pedagogical sense because it leverages or extends on the signature pedagogy of that particular discipline. Relatedly, this is why VR resonates with the types of place-based pedagogy used in subjects such as geography or in professional training simulations. The technology can be used to take the learner elsewhere and its spatial affordances (properties) fit with the signature pedagogy of geography which is the field trip or professions where situated learning in workplaces (placements) are key (such as clinical health or teacher education).

Let’s look at another example using the diagram. In order to teach science, an educator might want to  provide students with the opportunity to conduct experiments that are too complex or dangerous for a school laboratory – experimentation in labs being a signature pedagogy of the discipline of science. The teacher would therefore investigate if there was a total learning environment in the form of a virtual laboratory available so that experiments could be safely simulated.

A performing arts teacher might find that a virtual studio would be a great addition to the actual studio of the drama classroom because it offered a range of tools for her student to design sets and costumes. VR design studios allow for ease of prototyping (click of the controller for creating, erasing and changing elements) at actual scale and let students easily share design ideas for rapid feedback from the teacher and peers (the book has a case study on how a real teacher did this in a rural school).  In this case, the virtual environment offers tools to support the signature pedagogy of drama teaching which involve facilitating the creative processes through improvisation and iteration.

Finally, some VR applications enable student content creation – this might be through coding (using game engines such as Unreal and Unity for example) or with more accessible ‘no code create’ drag-and-drop software. In this pedagogical conception of VR, students use the technology as a form of immersive media that can tell a learning story. Students create their own worlds and tell their own stories to demonstrate mastery of learning outcomes and to communicate with, and teach, others.

This pedagogical conception of VR as media informs our latest research on using 360° content creation for second language learning at Athelstone primary school. The 360° platform, VRTY, offers ‘no code create’ opportunities for primary school students to create their own ‘surround’ worlds that acts as a foundation to embed other media into (other media includes gaze-activated pop-up text, sound files, photos, videos, gifs and animations). Students are required to demonstrate that they meet learning outcomes, such as oral or written mastery of Italian vocabulary, by creating a 360°world that is enriched with other digital content they have created. Students can link 360° environments together through gaze-activated portals. The many layers of media content creation entail students planning, experimenting, designing, and evaluating the story they want to tell in their virtual worlds. They then share their creations with peers and the teacher for authentic feedback. They are making media-rich narratives to educate others about the Italian language and culture while demonstrating content mastery.

One our key research questions involves understanding how language teachers can leverage their signature pedagogies to take advantage of the learning affordances of 360° media creation in ways that enhance student engagement and learning. Concentrating on the instructional utility of VR in direct relation to the distinctive pedagogies of the subject being taught – its signature pedagogies –  will yield theoretically rich and salient insights for teaching and curriculum design. You are invited to follow our adventure. Stay tuned.

Bought to you by A/Prof Erica Southgate on behalf of the Athelstone School VR School Team

References

Shulman, L. S. (2005). Signature pedagogies in the professions. Daedalus134(3), 52-59.

Southgate, E. (2020). Virtual reality in curriculum and pedagogy: Evidence from secondary classrooms. Routledge.

Using VRTY for language learning

In 2019, VRTY partnered with the Athelstone School and the VR School Study to investigate how primary school students could create 360° environments to enhance language learning, in this case Italian. VRTY was created in 2016 to help make virtual reality more accessible to educators and students. Its founders wanted to improve educational approaches by bringing-to-life 21st Century learning outcomes.

So what is it really? VRTY is a VR and interactive 360° content creation and sharing software platform. It lives in the cloud and its benefit is its ability to help anyone create their own virtual content. There’s no need to code because the platform provides its own easy-to-use tools to let the imagination run free, enact design thinking, problem-solve, prototype and create and share feedback with others.

Being cloud based, there are no specific hardware requirements to use the platform; all you need is a computer with Google or safari browsers and an internet connection. To share a newly created project, it can be shared via a QR code or unique web address (URL). When viewing a project, it can be viewed in 360°mode on any device with a google or safari browser; and to view in VR mode it can be viewed using a mobile and a VR cardboard or mobile headset.

Using VRTY 360° in education has the potential to

  • Increase student engagement;
  • Facilitate higher order thinking and collaboration;
  • Allow students to demonstrate content mastery through the creation of their own media-rich virtual environments;
  • Develop ICT capability area of the National Curriculum integrated across learning areas; and
  • Authentically share content that can be used across the education community.

VRTY provides online training on the platform and an in-class teleconference training session (which is pictured above). Founder, Kingston Lee-Young is enjoying the Athelstone School collaboration, offering the following insights:

“As software developers, we had a vision of creating something that would improve the learning environment and benefit both teachers and students. Partnering with the Athelstone School allows us to see our VRTY platform in action in the hands of year 5 students learning Italian. Whilst the involvement of the VR School Study means we are being measured to see if we are truly adding value.”

The photo above shows Kingston and Sarah Lee (VR Producer at VRTY) providing online training to Athelstone School students.

For more information about VRTY or to see some of its shareable content please head to: https://vrty.io

Some cool stuff from the VR Book

This article was first published by the Australian Association for Research in Education (29 June, 2020). I’m sharing it here because it highlights some interesting findings from the book.

Virtual Reality in school education: Australia leads the way with groundbreaking research

By Erica Southgate

In 2016, I attended a meeting and fortuitously sat next to the (now retired) principal of Callaghan College who asked me what type of research I’d like to do in schools. At the time a new high-end, highly immersive type of virtual reality (VR) hardware called the Oculus Rift had been released. This type of VR equipment was costly and needed an expensive computer to run but offered entry into amazing worlds. It provided high fidelity environments to be explored through gestural interaction via controllers that allowed you to use your virtual hands to interact with virtual objects and avatars (either other people or computer characters) and navigate in ways that felt incredibly embodied (I am addicted to flying and jumping off clouds in VR).

 I made a gentle pitch that I’d like to work with teachers to embed this technology into classrooms to see how it could be used for learning but that I had no idea what we might find. And so began the VR School Study, a collaboration with Callaghan College and later, Dungog High School, both government high schools in NSW, Australia.  It became the first research internationally to embed high-end VR in school classrooms.

VR School Study

The VR School Study is ongoing participatory research that aims to explore the use of immersive virtual reality in real classrooms. We focus on how VR can be used to enhance learning, its relationship to curriculum, and its implications for pedagogy. And we examine all the practical, ethical and safety issues that come with integrating emerging technology in classrooms. At the end 2018, the study reached a major milestone with the completion of two major case studies into the use of the technology in secondary schools.

An ‘arduous’ adventure in emerging technology

IN 2018, on the last day of research at Callaghan College, I interviewed two teachers about what it was like to embed an emerging technology in the classroom. The response was, ‘Arduous comes to mind.’ While we did have a laugh, the comment summed up a range of issues encountered during the research.

Space to accommodate VR and safety concerns

Trying to find an available classroom space large enough to accommodate the play areas needed for this VR, which is best used standing and moving around, proved difficult. On one campus we managed to get a room with a small storeroom off it that squeezed in three sets of VR equipment with play areas while at the other we had a larger former lab-preparation room attached to a classroom. Both VR rooms were beyond the immediate supervisory gaze of the teacher and so required me or a student to act as a safety ‘spotter’ to ensure there were no collisions with walls, furniture or peers. Even though there is a built in ‘Guardian System’ (a pop-up virtual cage mapped to the real environment you should stay within), some students became so immersed that they ignored it and needed intervention. Even now with ‘pass through’ cameras in some VR headsets (these allow the user to see the outside environment when they go beyond the Guardian System) some people become so immersed and are interacting with such speed that they can run into objects. Engineered safety solutions are not always enough to maintain safety.

Network and server issues

Getting the tech to work within the confines of the school internet network proved difficult. Game stores that allow multiplayer environments were blocked and internet work-arounds required. Teachers had to set-up individual student accounts which was time-consuming and often update applications in their own time. Our screen capture video, which showed a first-person view of what the student was seeing and doing in a virtual environment, indicated that the technology failed 15% of the time due to network, server and VR tracking drop-out. One of my favourite moments in student humour and resilience was when I heard one boy say to another as they who were fixing a server issue for the third time, “Aren’t you glad you signed up for this?”.

Content mastery and creativity through collaboration

Students were given the highest quality VR and ‘sandbox’ applications, such as Minecraft VR and Tilt Brush which allowed them to create in virtual environments without needing to code. Combined with clever curriculum design they undertook self-directed formative assessment tasks.

In Year 9 science this involved groups researching and developing a model of a body organ in Minecraft VR. The results were an astounding mix of scientific knowledge melded with creative endeavour developed through group problem-solving and collaboration inside and outside of VR.

Brain from up high

One group produced an anatomically correct, labelled eyeball which was toured by via a rollercoaster while another built a skyscraper of a brain sitting atop a spinal cord which you flew up to interact with engineered components representing neurons. While in VR, students narrated from memory the parts and function of the brain. Analysis of the screen capture video using a framework adapted from  work by Assistant Professor in Learning and Learning Processes the University of Oulu, Jonna Malmberg, indicated that the majority of students used the creative properties of VR to engage in highly collaborative science learning.

Inside the brain

At Dungog High School a senior drama class used single-player 3-D sculpting program Tilt Brush, as an infinite virtual design studio to explore symbolism in set design at real life scale and beyond. Students worked in groups to quickly prototype symbolic elements of their directorial vision with peers and the teacher moving in and out of VR to offer feedback. Mistakes were erased or changes made at the press of a button. The virtual studio of Tilt Brush melded with the drama studio to offer students an opportunity to view their design in 3D from the perspective of an audience member, director, designer or actor. All they needed to do was teleport round the virtual environment to do this.

Let’s leave behind the EdTech evangelism

An admission – I’m not a fan of the type of innovation discourse which permeates university managerial-speak and is associated with EdTech (educational technology) evangelism. This type of talk conjures up images of momentous leaps in ways of doing and knowing with the trope of the lone (male, yes it is a gendered) genius leading the charge with their vision of the future.

Innovation is incorrectly depicted as a development shortcut detached from contexts and the years of work that yield incremental improvements and insights, as Stanford University Director, Christian Seelos, and colleague Johanna Mair, argue. They warn against evaluating innovation only on positive outcomes as this can stifle experimentation required to progress an initiative in difficult or unpredictable environments.

This aligns with critical studies in EdTech where research is on the ‘state-of-the-actual’ rather than the ‘state-of-the-art’, as Distinguished Research Professor in the Faculty of Education, Monash University, Neil Selwyn reminds us. It entails moving away from trying to ‘prove’ a technology works for learning to scrutinizing what actually takes place especially in contexts that are not the ‘model’ well-resourced schools where technologies are often tested.

Teleporting away for now

As I have argued elsewhere, to get the best ethical and educational outcomes with emerging technologies we must carefully incubate these in schools (and not just resource-rich ones) in collaboration with willing teachers so that we can document incremental ‘innovation’ through ‘state-of-the-actual’ reporting. This can be an arduous project but one full of authentic and valuable insights for those willing to go on a research and pedagogical adventure. It’s this type of evidence, not EdTech evangelism, that we need.

For those who want more. In May 2020, I published findings from the study in Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (Routledge). As co-researchers, teachers from Callaghan College and Dungog High School contributed to their respective chapters in this book. The book offers new pedagogical frameworks for understanding how to best use the properties of VR for deeper learning as well as a ‘state-of-the-actual’ account of the ethical, practical and technical aspects of using VR in low-income school communities.

Erica Southgate (PhD) is Associate Professor of Emerging Technologies for Education at the University of Newcastle, Australia. She is lead author of the recent Australian Government commissioned report, Artificial intelligence and emerging technologies (virtual, augmented and mixed reality) in schools research report, and a maker of computer games for literacy learning. Erica is always looking for brave teachers to collaborate with on research and can be contacted at Erica.southgate@newcastle.edu.au. Erica is on Twitter@EricaSouthgate

This article was originally published on EduResearch Matters. Read the original article.AARE

NEW book from the VR School Study

Out of three years of co-research with teachers comes the first book (of many I hope) from the VR School Study. The book, Virtual Reality in Curriculum and Pedagogy: Evidence from Secondary Classrooms (2020 Routledge) provides a brand new pedagogical framework with scaffolds for educators on how to use the technology for deeper learning. Case studies from Callaghan College and Dungog High School are included with a focus on metacognition, collaboration and creativity.

Blog SS

New report & infographics on immersive learning

A/Prof Erica Southgate was commissioned by the Australian Government to produce research on emerging technologies for schools including current state-of-evidence, and pedagogical,practical and ethical advice. The project produced the Artificial Intelligence and Emerging Technologies  (virtual, augmented and mixed reality) in Schools Research Report, a short read version of the report written for teachers and infographic posters for students. You can find these here:

Full report – Artificial Intelligence and Emerging Technologies in Schools Research Report 

Short Read on Virtual Reality and Augmented Reality in Schools

VR and AR infographics for students

 

Q & A on teaching drama through VR

In our previous post we introduced a project at Dungog High School where they are using the 3D drawing program Tilt Brush in drama class. In this post, Head Teacher Louise Rowley responds to 4 key questions on her learning journey and how to use VR in drama in a curriculum-aligned way.

What is the VR project about?

The Year 11 students were creating a Director’s Folio for a contemporary Australian play called Ruby Moon. They traditionally have to create a director’s vision and explore this in their set box and costume designs. [Syllabus outcome P1.4: understands, manages and manipulates theatrical elements and elements of production, using them perceptively and creatively.] For this project, we included the VR and the program Tilt Brush for them to explore and create an audience experience of their Director’s vision. This really led to more engagement with the atmosphere and audience experience. [Drama Stage 6 Syllabus outcome P2.1: understands the dynamics of actor-audience relationship.]

They were working in groups to create their designs and needed to understand, manage and manipulate theatrical elements and elements of production. They were charged with the task of using them perceptively and creatively and this was taken to a new level of creativity in the VR space. We had been inspired by the National Theatre in the UK who created an immersive experience for their audience based on their director’s vision. This takes the audience to a completely new place and extended the idea of theatre as an immersive art form. [Syllabus outcome P1.4: understands, manages and manipulates theatrical elements and elements of production, using them perceptively and creatively.] The process of taking their Director’s vision into the VR space allowed them to think more about the audience’s experience and really immerse themselves in the director’s role. It allowed them to demonstrate their directorial vision in the immersive virtual world as well as in the physical world. [Syllabus outcomes P2.2: understands the contributions to a production of the playwright, director, dramaturg, designers, front-of-house staff, technical staff and producers; P2.3: demonstrates directorial and acting skills to communicate meaning through dramatic action.]

The project also aligns with key competencies in Drama with students collecting, analysing, organising information, and communicating ideas and information in new and creative ways their Director’s folio and in the VR space. Students were also planning and organising activities and working with others and in teams. The level of collaboration, which developed throughout the project, was a key achievement. Students were discussing ideas like Directors and helping each other to master the new software. They had no experience with the technology before they started and were able to unleash their creativity and I saw students who were less confident really growing in their confidence and ability to take a role in the group.

Using the VR deeply engaged the students in their learning. The project involved enquiry, research, analysis, experimentation and reflection contributing to the development of the key competency solving problems. Students had the opportunity to develop the key competency using technology in the study of new approaches to Drama and Theatre and dramatic forms. VR is a completely new technology and we are already exploring more ideas on how to link more programs together within the Tilt Brush software.

Why use this technology?

In the design process there is a lot of experimentation and collaboration required. Tilt brush has endless features that allow this to occur. Sketches could be saved, videoed, gifs made and photographed, and this process of documenting their ideas helped the students reflect on their ideas more. The quality of their ideas developed further. The Tilt Brush program was an endless space, which incorporated many amazing creative features. Designs could be instantly erased and then re-created quickly. It was not messy and did not waste materials. It had many resources that we do not usually have in the Drama room. Endless colours and brushes, backgrounds, models to be imported and guides to draw around. Sketches could be made smaller or bigger in an instant. It allowed all students to be equal. Once in the technology they were able to each contribute in a very really and tangible way to the group idea. It also allowed our rural students to have access to quality programs, which can sometimes not be available to them because of location.

Student 2

What is the biggest learning curve?

We had to learn how to use the technology and how to program the classwork to make sure other tasks were being completed at the same time. This was fairly painless and the students were great. As the teacher, I had to take a risk with new technology and not be frightened of not knowing absolutely everything about the software. After a while, the students were teaching each other and me.

What advice would you give to teachers?

Just do it! It isn’t scary and you don’t have to know everything. I have given advice to others in my school about trying new technology. There is so much to learn is can be quite overwhelming but is can be a lot of fun. I am now helping other teachers try a few new technologies. So the effect has been good.

 

Feature Image: Head Teacher Louise Rowley experimenting in Tilt Brush

Picture in text: Students discussing virtual set design features.

Immersive VR: A literature review and infographic for teachers

I was recently commissioned to write a literature review on immersive virtual reality for teachers by the New South Wales Department of Education. The Department kindly distilled the literature review into an infographic to guide teacher practice

The report is: ‘Immersive virtual reality, children and school education: A literature review for teachers.’

I welcome dialogue on the literature review from teachers, researchers and developers – A/Prof Erica Southgate

Top 5 VR School moments (so far)

As educators it’s always good to reflect on our top learning experiences, and so here are my top 5 VR School moments to date.

1. When the tech works it’s magic

It’s no easy feat getting the tech to work for this project. It includes networking the Oculus Rifts so that students can collaborate in Minecraft VR and deploying Window 10 version of Minecraft to desktop and laptop computers or Pocket Edition Minecraft to tablets and  diverse BYOD mobile devices. The school system has a block on game stores and a work-around was needed. And, then there is the issue of glitches like inexplicable loss of tracking, program crashes or the need to reset Guardian systems that have shifted within the tight space of the VR room.  Every time we get through lesson without too many glitches we breathe a sigh of relief.

2. Students are smiling, laughing, dancing and swimming with dolphins in VR

Watching the joy of students in immersive virtual reality is worth the gargantuan effort to address the technical issues. Students in immersive VR are animated as they explore, create, work together and sensation seek (by flying over landscapes or swimming with dolphins). There is spontaneous dancing and singing too. Watching students have  serious fun in the science classroom is just brilliant.

3. Students recognise if they are distracted and refocus back on the learning task

Students remark that all the cool things to do in immersive VR can distract them from getting on with the learning task; however, most do direct themselves and each other back to learning and actively negotiate roles and actions to achieve their goal. Understanding this dynamic is important for future educational applications of the technology.

4. Students collaborate to create new ways to demonstrate their understanding of the topic

Students generally like the challenge of interpreting the learning task to demonstrate their understanding of the topic in new and creative ways; in this case the task is building biological models and delivering unique and fun presentation modes such as tour experiences.  It isn’t possible to predict how students will creatively use the affordances of immersive VR (like manipulation of scale or embodied spatial navigation), but the end results are often positively surprising (like taking the teacher on a flying tour of an enormous plant cross-section or building a hollow root system that can be traversed by other learners).

5. Some girls start asking questions about technology careers

An unexpected consequence of putting the technology into classrooms is that it has prompted girls express interest in the uses and future of the technology and possible careers in the area. Using immersive technologies for learning may spark career conversations about tech jobs with girls and other groups who are under-represented in the industry. This is worth thinking about.

Over and out for now (I am off to swim with those virtual dolphins) – A/Prof Erica Southgate

Feature image: Screenshot of the dolphins in Minecraft.

An update from the VR School Study

As we move into Phase 2 of the VR School Study, the team thought that we would give you a quick video update on what we have learnt so far and what we hope to achieve over the next few months. Here is Associate Professor Erica Southgate with the low down!

And how cool is the featured picture (top). It is a student work sample from Phase 1 of the study. On the left is a bluebell that the student created in Minecraft VR and on the right is how he labelled the cross-section of the flower by drawing on his research on the different parts and functions of a plant.  He took Erica on an amazing guided tour of his creation where they both flew around the flower (like bees) while he explained the meaning of the labelled cross-section to her. It was a thoroughly researched scientific experience and great fun to boot!

Blog at WordPress.com.

Up ↑